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ABSTRACT 
 

One of the main barriers to increase the solar energy share is its intermittency. 

Solar energy has a large variability in different time-scales driven by the solar 

astronomical cycles and by weather. Ground-based measurements are important 

to evaluate the variability at high resolutions, but they are only representative of 

small areas close to the measurement sites. Satellite observations come as a 

solution for the analysis over large areas, however they have coarse temporal 

and spatial resolutions. The main objective of this thesis is to develop a 

methodology for the characterization of the variability of the solar resource, 

focusing on the cloud effects. This simple methodology will allow to evaluate the 

variability of the solar power generation over large areas, using only data of 

geostationary satellite images, with no need of ground data. First, we compared 

the cloud cover fraction obtained through a satellite-based methodology with site-

specific data from all-sky cameras. This comparison presented a Pearson 

correlation of 0.9. In addition, we evaluated the similarity between the cumulative 

distributions functions of both datasets using the Kolmogorov-Smirnov test and 

the results pointed out for statistically significant similarity between them, even 

though their time resolutions were different. Then, we examined the variability of 

the global horizontal irradiance ramp rates from ground-based radiometers and 

compared it with the satellite cloud cover variability in 3 different Brazilian climate 

regimes. The results showed that the driest periods have lower solar irradiance 

variability. However, this result is not necessarily valid for different climate 

regimes. For instance, Petrolina, the driest place, exhibited the higher variability 

for shorter timescales, probably due to the rapid passage of small clouds 

shadowing the sun. When comparing the variability of the satellite cloud cover 

with that of the solar irradiance, the Pearson correlation reached up to 0.93, 

depending on the site, for the same time resolution (30 minutes). However, 

considering smaller time steps for solar irradiance ramps, the correlation 

decreased to values lower than 0.66 in all sites. The proposed methodology has 

broad application in the planning and management of solar power generation in 

countries with large territorial extension, such as Brazil. 

Key Words: Cloudiness, Satellite, Solar Variability  
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ANÁLISE DA VARIABILIDADE DA COBERTURA DE NUVENS 
EMPREGANDO DADOS DE SATÉLITE GEOESTACIONÁRIO 

 
 

 

RESUMO 
 

Uma das principais barreiras para aumentar a participação de tecnologias 

solares na matriz energética é sua intermitência. A energia solar apresenta 

grande variabilidade em diferentes escalas de tempo impulsionadas pelos ciclos 

naturais do sol e pelo clima. Medidas de superfície são importantes para avaliar 

a variabilidade em altas resoluções, mas são apenas representativas de 

pequenas áreas próximas aos locais de medição. Observações por satélite são 

uma solução para a análise em grandes áreas, no entanto com resoluções 

espaciais e temporais mais grosseiras. O objetivo principal desta tese foi 

desenvolver uma metodologia para a caracterização da variabilidade do recurso 

solar no território brasileiro, com foco nos efeitos das nuvens. Esta tese 

apresenta o desenvolvimento de uma metodologia simples, para avaliar a 

variabilidade da produção solar em grandes áreas utilizando apenas dados de 

satélite geoestacionário, sem a necessidade de modelar a irradiação solar em 

superfície. Inicialmente, investigou-se a relevância estatística de uma 

metodologia baseada em dados de satélite geoestacionário para medir a fração 

de cobertura de nuvens, comparando-a com os resultados de câmeras 

imageadoras do céu. A comparação apresentou boa concordância, com índice 

de correlação Pearson de 0,9. Além disso, as funções de distribuição cumulativa 

de ambas bases de dados foram analisadas através do teste de Kolmogorov-

Smirnov demonstrando que as duas bases de dados possuem distribuições 

estatisticamente similares, mesmo quando apresentam resoluções temporais 

diferentes. Além disso, a variabilidade das taxas de variação da irradiância global 

em superfície foi comparada com a variabilidade da cobertura da nuvem 

calculada através de dados de satélite em 3 diferentes regimes climáticos 

brasileiros. A investigação confirmou que os períodos mais secos apresentam 

menor variabilidade, devido à menor presença nebulosidade. No entanto, isso 

não é válido para diferentes climas, porque Petrolina, o local de clima mais seco, 

apresentou maior variabilidade em escalas de tempo mais curtas, associada 

provavelmente com a rápida passagem de pequenas nuvens no local. Ao 



x 
 

comparar a variabilidade da cobertura de nuvens obtida através de dados de 

satélite com a irradiância solar global horizontal, a correlação foi de até 0,93, 

para a mesma resolução de tempo (30 minutos). No entanto, para taxas de 

variação em intervalos menores a correlação diminuiu até valores menores que 

0,66. Este método tem ampla aplicação no planejamento e gerenciamento da 

geração de energia com tecnologia solar em países com grande extensão 

territorial, como o Brasil. 

Palavras-chave: Nebulosidade, Satélite, Variabilidade Solar 
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1 INTRODUCTION 

The world energy consumption is expected to increase at least twice by the 

middle of this century, mostly due to the population growth and economic 

development (LEWIS and NOCERA, 2006). To tackle with this growth in energy 

demand ensuring energy security with minimal impact on the climate system, the 

use of alternative energy sources becomes an important commitment. In this 

context, the solar energy comes as one of the leading options, especially in the 

last decade, due to the declining costs of solar power technologies and the 

increase of its efficiency (MARTÍNEZ-CHICO; BATLLES; BOSCH, 2011).  

One of the major barriers to increase the solar energy share in the energy matrix 

is its intermittency. The solar resource has a large variability in different time-

scales driven mostly by the solar natural cycles (the diurnal and the annual 

seasonality) and by weather. While the natural cycles can be precisely estimated 

by calculating the apparent motion of the Sun in the sky, the variability caused by 

weather and atmospheric conditions depends highly on clouds and weather 

systems dynamics, which makes it much harder to predict (PEREZ et al., 2016; 

WATANABE; OISHI; NAKAJIMA, 2016). Clouds passing in front of the Sun can 

cause drastic fluctuations in the surface solar irradiance and this variability has a 

huge impact in the power output of PV or concentrated solar power plants (ARI; 

BAGHZOUZ, 2011; LAVE; RENO; BRODERICK, 2015; PEREZ et al., 2016). 

Also, the solar radiation variability ends up producing transients that are 

incompatible with the required standards for the electricity distribution system, 

including voltage variability and frequency disturbances caused by imbalance 

between power generation and electricity demand (KLEISSL, 2013). In addition, 

the solar energy intermittency can cause rapid changes in the receiver 

temperature and it may lead to thermal stress of the devices, increasing the 

maintenance costs (ARI; BAGHZOUZ, 2011; KAZANTZIDIS et al., 2012). 

To understand and manage the output variability of a solar power plant, it is 

important to examine it in an appropriate spatial and temporal context. For 

example, when expanding the area of the solar plant (footprint), the intermittency 

is attenuated, because some photovoltaic panels may be shaded while others 

may be exposed to clear sky. Furthermore, when the solar irradiation is integrated 
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over different time intervals, minutes, hours or days, the high-frequency variability 

will be attenuated and become insignificant for the longer integration times. 

Figures 1.1 and 1.2 show the effect of different integration times and footprints 

on the variability of the solar resource. The smoothing effect on solar irradiance 

is strongly related to the distance between the solar panels, the time interval of 

interest, the speed of the cloud and its size (KLEISSL, 2013; PEREZ et al., 2016).  

Figure 1.1 - The variability of global irradiance time series in a North-America location as 
a function of the integration time. The Figure includes 1 day of minute data, 
4 days of hourly data, 26 weeks of weekly data and 16 years of yearly data. 

 
Source: Perez et al. (2016). 

 
Figure 1.2 - The variability of daily global irradiance time series observed along one 

year for different footprints. 

 

Source: Perez et al. (2016). 
 

These two factors, footprint and time scale, are of primary concern for grid 

operators and lead to different load management challenges. Increasing the solar 

generation footprint from a single location to a resource dispersed over an entire 

region will reduce intermittency considerably. Thus, shorter-term variability 

matters for smaller spatial scales. One-minute fluctuations are relevant for grid 

operators of single distribution systems and large centralized plants, due to 

voltage control issues. In other hand, for grid balancing of distribution systems, 
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the variability below 30 minutes is not relevant, while hourly and above variability 

remains of higher concern (PEREZ et al., 2016). 

This thesis aims to deepen the knowledge about the variability of the cloud 

coverage in order to minimize its effect on solar generation. To pursue this goal 

the main task of this thesis is to develop a methodology for the characterization 

of the variability of the solar resource in the Brazilian territory, focusing on the 

effects of the clouds. This methodology should be applicable throughout the 

country and not only for a specific site, so the existing methodology based only 

on ground measurements has not the required spatial coverage. The use of 

geostationary satellite imagery comes as an alternative tool for large areas, 

however with coarse temporal and spatial resolutions (LAVE; BRODERICK; 

RENO, 2017; WATANABE; OISHI; NAKAJIMA, 2016). One of the main 

challenges faced in the development of this thesis was to define the limitations of 

the satellite methodology and to develop a reliable tool to deal with this limitation. 

The first step was to investigate the statistical relevance of the satellite-based 

methodology when compared with the methodology employing ground-based 

cloud cover data acquired by an all-sky camera. This comparison aimed to 

analyze the reliability and the statistical relevance of the satellite results, taking 

into account the differences in temporal and spatial resolutions. After that, we 

investigated if the cloud-cover variability derived by the satellite-based 

methodology was statistically correlated with the variability of global solar 

irradiance in locations presenting distinct typical climate and atmospheric 

characteristics.  

An immediate application of this new methodology will be the identification of 

hotspots more appropriate for the solar technologies in Brazil, concerning not 

only the total amount of the solar resource, but also its temporal variability. This 

information is critical not only for the generation and distribution of photovoltaic 

solar energy, but also for the strong impact on the penetration of the concentrated 

solar energy technologies (CSP) in the Brazilian market. 

This document is based on two published papers. Both were produced within the 

PhD research program in the Center for Earth System Science at the National 

Institute for Space Research (INPE), Brazil. Also, part of the contents of these 
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two papers were developed during a period of studies in the Institut für 

Meteorologie und Klimatologie at the Leibniz Universität Hannover, Germany. A 

brief description of the thesis structure is presented below: 

Chapter 2 includes the area of study of this thesis and the general part of the 

methodology used in both papers. Data from the Cachoeira Paulista site were 

used in both papers, however the data from São Martinho da Serra and Petrolina 

were used only in the second one, because Cachoeira Paulista is the only site 

with data from an all-sky camera available. 

Chapter 3 includes a comparison between results of cloud cover fraction 

estimated using imagery from GOES 13 geostationary satellite with those 

estimated by using site-specific images from All-Sky camera. The study assumes 

as reference the results obtained with the All-Sky camera method and analyzes 

the reliability and the statistical relevance of the satellite results, taking into 

account the differences in temporal and spatial resolutions. 

Chapter 4 presents a characterization of the global solar irradiance variability for 

different timescales and different climate regimes. Additionally, the chapter 

includes a comparison between the cloudiness variability obtained from a 

geostationary satellite method and those of ground measurements of solar 

irradiance in the same situations. The study described here aimed at evaluating 

the relationship between the satellite cloud cover variability and the surface solar 

irradiance variability in different climate regimes and timescales. The Chapter 

presents a methodology for the variability analysis of the solar resource using 

only satellite imagery. 

Chapter 5 presents the major findings and the general conclusions of the 

research. The Chapter also includes some proposals and recommendations for 

future research, applications of the results and knowledge acquired during this 

doctorate research. 
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2 STUDY AREA AND GENERAL METHODOLOGY 

2.1. Study Area 

Brazil has several distinct climate regimes mostly because of its large territorial 

extension and the atmospheric circulation. As a consequence, the rainfall and 

nebulosity regimes are quite different throughout the Brazilian territory. Figure 2.1 

shows the location of measurements sites superimposed on a map presenting 

the major Brazilian climate regimes. The climate in the central area of the 

Northeastern region (in orange color) is the semi-arid characterized by very dry 

weather all year long (PEREIRA et al., 2017). The Petrolina (PTR) measurement 

site designed to acquire meteorological and solarimetric data is located in this 

area. The other two measurement sites, Cachoeira Paulista (CPA) and São 

Martinho da Serra (SMS), are located in humid subtropical climate zones. 

Figure 2.1. Brazilian climate zones and the measurement sites analyzed during this work. 

 

Source: Adapted from Alvares et al. (2013). 

 



6 
 

2.1.1. Cachoeira Paulista (CPA)  

The Brazilian Institute for Space Research (INPE) operates the ground 

measurement site located in Cachoeira Paulista (CPA) (22° 41’ 23’’S; 45° 00’ 

22’’W). The annual rainfall in the region is around 1360 mm and it presents two 

distinct climate seasons – a wet season (from October to March) when most of 

the precipitation occurs (~176 mm/month) and a dry season (from April to 

September) with low rainfall (~51 mm/month). This also influences the mean 

cloud cover fraction in the region, which has a mensal mean around 80% in the 

wet season and 60% in the dry season, according to visual observations (INMET, 

2018). During the winter (dry season) the occurrence of cold fronts is common, 

bringing most of the cloudiness for this season. In summer (wet season),  the 

region is affected mostly by the South Atlantic Convergence Zone (ZCAS) and 

natural convection (NUNES; VICENTE; CANDIDO, 2009). 

2.1.2. São Martinho da Serra (SMS) 

The ground measurement site São Martinho da Serra (SMS) is located in at the 

Southern Space Observatory campus (29° 26’ 34’’S; 53° 49’ 23’’W) and managed 

by INPE. The annual rainfall in the region is around 1800 mm presenting monthly 

averages ranging from 111 mm to 173 mm. This low seasonal variability in the 

rainfall also reflects the mean cloud cover fraction in the region, which has a 

monthly mean around 50% (INMET, 2018). The occurrence of cold fronts during 

the austral winter and the occurrence of convective systems and local convection 

in summer explain the low rainfall variability over the year (PEREIRA et al., 2017).  

2.1.3. Petrolina (PTR) 

The Petrolina (PTR) measurement site (09° 04’ 08’’S; 40° 19’ 11’’W) is located in 

the driest area of the Northeastern region of Brazil. The annual rainfall is around 

580 mm with a wet season from November to April when most of the precipitation 

occurs. The monthly averages of precipitation range from approximately 44 mm 

to 114 mm during the wet season (November to April) and from approximately 1 

mm to 13 mm during the dry season (from May to October). The cloud cover 

fraction has a monthly mean around 60% in the wet season and 50% in the dry 

season, according to visual observations (INMET, 2018). The dry climate of the 
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region is due to influence of the Walker’s circulation, which is only broken in the 

months of February to April. This wet period accounts for ~60% of the total 

precipitation, because the Intertropical Convergence Zone (ITCZ) is in its 

southernmost position (CAVALCANTI et al., 2009; STRANG, 1972). 

2.2. Effective cloud cover coefficient 

Geostationary satellite imagery has become an important tool for cloud 

monitoring. The Geostationary Operational Environmental Satellite GOES-13 

satellite, operated by the National Oceanic and Atmospheric Administration 

(NOAA) provided images with 30-min time resolution for South America during 

the 2016-2017 in five different spectral intervals. The visible spectral band (0.55 

to 0.75 µm) allows us to observe clouds, fog, and pollutants in the atmosphere 

during the day. 

The effective cloud cover coefficient (Ceff) is defined for each pixel of the satellite 

image, in terms of the radiance (Lr) measured by the satellite in the visible 

channel, the clear-sky radiance (Lclr) and the radiance for overcast condition (Lcld), 

as described by Equation 2.1. The Lclr and Lcld values can be determined by 

composing clear and overcast images from all satellite images acquired during 

one-month period. In this step, we divided the reflectance by the cosine of the 

sun zenith angle to avoid the influence of the illuminance geometry in the 

radiance data observed by the satellite. According to Martins et al. (2008), Ceff 

is an dimensionless coefficient related to the cloud optical depth in each image 

pixel. The Ceff ranges in the 0 to 1 interval from very clear sky conditions until 

completely overcast sky with no direct solar irradiance reaching the Earth’s 

surface. 

Ceff = (𝐿𝑟 − 𝐿𝑐𝑙𝑟) (𝐿𝑐𝑙𝑑 − 𝐿𝑐𝑙𝑟)⁄                                 (2.1) 

Usually, the clear sky radiance estimation assumes the lowest visible radiance 

measured by the satellite during the one-month period. However, there may be 

instances where a cloudless pixel is shaded by clouds from adjacent pixels thus 

providing an incorrect cloud cover value. In order to minimize this issue, we used 

a procedure based on the percentile 5 to estimate 𝐿𝑐𝑙𝑟 values.  
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Similarly, the overcast radiance is usually determined for each pixel as the 

highest visible radiance observed by the satellite during the period of one month. 

However, this technique becomes flawed when the completely overcast condition 

does not occur in a pixel during this sampling period. In fact, this condition occurs 

frequently in very dry arid areas of the Brazilian Northeastern region. To account 

for this condition, we assume that similar cloud types are found all over the target 

area and the radiance observed by the satellite will be quite the same after 

correction for illuminance geometry. Therefore, we established a fixed 𝐿𝑐𝑙𝑑 value 

for the overcast sky condition equals to the 𝐿𝑐𝑙𝑑 radiance observed in areas with 

more frequent cloud cover.  
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3  COMPARISON OF METHODOLOGIES FOR CLOUD COVER 

ESTIMATION IN BRAZIL1  

3.1. Introduction 

The understanding of the several factors influencing the Earth's energy balance 

is fundamental for assessment of the Earth's climate and its variability. Clouds 

are the major modulator of the shortwave and longwave radiation components of 

the Earth's energy balance and, as such, help regulate the planet's temperature. 

In general, high clouds act as greenhouse gases, increasing the longwave 

radiation (LW) at the surface and warm up the atmosphere, while low clouds have 

a cooling effect by reflecting the solar radiation back to space (LIOU, 2002; 

MALEK, 1997). Clouds can even enhance the solar radiation at surface, 

sometimes to values higher than the ones observed at the top of the atmosphere. 

This effect happens due the reflection by cloud edges and/or forward scattering 

of the radiation by the clouds nearby, when the Sun is not obstructed by them 

(ANTÓN et al., 2011; CALBÓ, 2005; TZOUMANIKAS et al., 2016). 

In this context, clouds have attracted increasing interest in the solar energy 

sector. The first method for assessment of cloud coverage was the visual 

observations made by operators of meteorological stations, and it is still used 

today. The method classifies clouds according to visual analysis of shape and 

appearance, dividing the sky into eight parts (octas) (ROBAA, 2008; 

WERKMEISTER et al., 2015). Because of the high subjectivity of the method, 

nowadays, several authors reported different ways for estimating the amount of 

clouds in the sky in a more objective way. Some authors report methods using 

downward longwave radiation, along with other meteorological parameters 

acquired at the surface (DÜRR; PHILIPONA, 2004; MALEK, 1997; MARTY; 

PHILIPONA, 2000). Others investigate the cloud cover conditions based on all-

sky camera images (KAZANTZIDIS et al., 2012; LONG et al., 2006; NETO et al., 

2010) and/or on satellite data (ESCRIG et al., 2013; LIANG; YUAN, 2016). 

                                                
1 This chapter is based on the paper: LUIZ, E.W.; MARTINS, F.R.; COSTA, R.S.; PEREIRA, E.B.; 
Comparison of methodologies for cloud cover estimation in Brazil – A case study, as a part of the 
requirements for obtaining the Ph.D. title in the Earth System Science graduate program. 
Published at: Energy for Sustainable Development, v. 43, p. 15-22, 2018. DOI: 
10.1016/j.esd.2017.12.001 
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There are several difficulties in combining satellite with ground-based data when 

related to measures of cloudiness. Differences in both spatial and temporal 

resolutions can be cited. In addition, satellites feature instantaneous 

measurements at small solid angles, while ground measurements are made at 

large solid angles from the sky dome (ESPINAR et al., 2009). Also, multiple cloud 

layers, may lead to misclassifications; e.g. high clouds appear sooner at the all-

sky camera images than low clouds at the same distance, while height has no 

effect for the satellite analysis (ESCRIG et al., 2013). 

Many authors have worked comparing different methods for cloud analysis. 

Wacker et al. (2015) compared different methods for the estimation of the total 

cloud cover over Switzerland. The methods used all-sky cameras, downward 

longwave radiation, visual observations, the Meteosat Second Generation (MSG) 

satellite and ceilometers. With direct comparisons of the results in octas, the 

results indicated that the automatic methods underestimated the nebulosity 

estimated by the observer; however, the method using the all-sky camera 

obtained the closest results. In the comparison between the automatic methods, 

the data with the better agreement were those obtained with the camera and the 

MSG satellite. In 52% of cases, the two methods obtained the same result, while 

concordance within ± 1 or ± 2 octas were 72% and 84%, respectively. 

Escrig et al. (2013) compared different cloud situations over Almería, Spain, using 

the MSG satellite and an all-sky camera. Their satellite algorithm always detected 

clouds when the camera classified a condition as overcast (over 7 octas) and 

never classified as overcast when the camera classified as cloudless (below 

1 octa), both with > 90% of agreement. For partially cloudy situations the method 

had approximately 75% of agreement. Werkmeister et al. (2015) made the same 

comparison for Hannover (Germany), but they classified the situations differently: 

the overcast condition was stipulated for cloud fractions over 5 octas, the 

cloudless condition for fractions below 3 octas and broken sky from 3 until 

5 octas. For overcast situations, the satellite probability of detection presented 

very good skill (94%), for cloudless the skill was good (72%), but for intermediate 

fractions the skill was unsatisfactory (12%). 

This study aims at comparing two approaches to get cloud cover information in 

Cachoeira Paulista (SP), located at the Southeastern region of Brazil. The 
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methodologies use geostationary satellite data and all-sky camera images. The 

comparative evaluation assumed the all-sky camera method as the reference 

methodology, due to better data resolution. The specific methodology is 

described in Section 3.2. Section 3.3 describes the relationship between both 

methodologies. The specific conclusions of Chapter 3 are presented in Section 

3.4. 

3.2. Methodology 

3.2.1. Determination of cloud cover fraction using an All-Sky camera 

The all-sky camera SRF-02 (EKO Instruments) is a digital camera with fish eye 

lens and 180° field of view. The camera is encased in a weatherproof housing 

with a heater system for temperature stability. The user can remotely set up the 

image acquisition parameters using a desktop computer through TCP/IP 

connection. The instrument is operating at the roof of the Laboratory of 

Meteorological Instrumentation (LIM) from INPE. The image acquisition was from 

July 4th, 2016 to June 30th, 2017, in a 10-min interval during the year of 2016 and 

5-min in 2017. The camera takes two sky images with different light exposure: 

one normal exposed and one underexposed. The EKO instrument provides the 

Cloud Cover Fraction, hereafter called CCFCam, using the company's software 

package to identify clouds and calculate the cloud cover fraction, for each 

acquired image, using the method proposed by Ghonima et al. (2012). In reason 

of the hazy sky and the presence of some obstacles close to the horizon line, the 

image pixels with zenith angles larger than 70° were discarded.  

To classify the images, it is necessary to previously manually select clear sky 

library of images. Then, the software compares each image with the library image 

with the closest solar zenith angle and classifies each pixel as clear sky, thin 

cloud or opaque cloud, based in thresholds, as shown in Figure 2.1. It can be 

noted that the classification of thin clouds presented incorrect results and, 

because of that, the opaque cloud cover fraction was used as the total fraction. 

In addition, the software does not classify very bright areas near the sun, masking 

them in black.  
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Figure 3.1. Picture from the sky without the elevation angle of 30° (left) and evaluation 
made by the software (right). 

 
  
 

3.2.2. Determination of cloud cover fraction using geostationary satellite 

imagery 

To compare the satellite data with the cloud cover fraction results obtained with 

the All-Sky Camera, it was necessary to adapt the Ceff methodology. Since Ceff 

refers only to the cloud coverage of each pixel, a Ceff value threshold was used 

to classify each pixel as clear sky or cloudy. The threshold used was 0.14, 

because of best correlation with the camera results. Thus, the fraction of cloud 

cover estimated by the satellite (CCFSat) was defined as the number of pixels 

classified as cloudy, divided by the total in the analyzed area. The image 

acquisition was done with a 30-minutes time resolution (with exception to the 

periods of fast scanning mode), from July/2016 to June/2017. 

The satellite area necessary to compare with the camera is not easy to determine, 

because clouds with different heights appear differently in the camera image, e.g. 

higher clouds appear sooner in the camera horizon. So, with the discard of zenith 

angles larger than 70º of the camera image, we started with a mean cloud height 

of 3 km, which gives an area of ~290 km², and then changed the area until the 

best correlation with the camera results were found. The best correlation were 

found using an area of 23x23 pixels (~530 km²), which refers to a mean cloud 

height of ~4 km. Figure 2.3 presents the Ceff of an area of 35x35 pixels over CPA 

on the left and the mask made using the threshold on the right.  
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Figure 3.2. Ceff of an area of 35x35 pixels over CPA on the left and the mask made using 
the threshold of 0.14 on the right (white pixels refers to cloud contaminated 
and blue to clear-sky).  

  

 

3.2.3. Statistical analysis  

Three statistical indexes were used to compare the methodologies to estimate 

cloud cover fraction. The method using all-sky camera was the reference 

methodology. The first statistical index used was the Mean Deviation described 

in Equation 3.1 where n is the number of match ups between the two data sets 

and xm is the difference between them. The Mean Deviation (MD) is positive if 

the all-sky camera method provided lower cloud cover fraction values than the 

satellite methods. 

𝑀𝐷 =
1

𝑛
∑ 𝑥𝑚

𝑛
𝑚=1                                                (3.1) 

The Standard Deviation (SD) is defined by Equation 3.2. The expected value for 

MD is zero if both methods provide equal estimations for cloud cover fractions. 

The SD value provides information on the dispersion of the discrepancies around 

the MD value. 

𝑆𝐷 = √
1

𝑛
∑ (𝑥𝑚 − 𝑀𝐷)²𝑛

𝑚=1                                        (3.2) 

The last statistical index used for comparisons between two datasets was the 

Correlation Coefficient R as defined by Equation 3.3. 

𝑅(𝑦, 𝑧) =
∑ (𝑧𝑚−�̅�)(𝑦𝑚−�̅�)𝑛

𝑚=1

√∑ (𝑧𝑚−�̅�)2.∑ (𝑦𝑚−�̅�)2𝑛
𝑚=1

𝑛
𝑚=1

                                  (3.3) 
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where zm and ym represent the different data sets and  and �̅� are their average 

value. 

In addition to these statistical indexes, we calculated the probability of detection 

(POD) of similar estimations of cloud cover fractions provided by the two 

methodologies. Also, a false alarm rate (FAR) was calculated to indicate the 

probability of finding dissimilar estimation of cloud cover fractions. This analysis 

was based on the scheme proposed by Werkmeister et al. (2015). 

The POD and FAR were calculated using the CCF estimated in octas, as 

explained by the World Meteorological Organization for weather observations. 

The CCF values, ranging from 0 to 1, were transformed into octas multiplying by 

8 and then rounding them for the nearest integer between 0 (completely clear) 

and 8 (completely overcast). 

For this analysis, the sky conditions were arranged composing three different 

scenarios: cloud free (CCF ≤ 2 octas), broken clouds (3 octas ≤ CCF ≤ 5 octas) 

and completely cloudy sky (CCF ≥ 6 octas). The contingency table is presented 

in Table 3.1, according to Reuter et al. (2009). The table can be used to identify 

the number of cases in each of the cloud coverage conditions, considering the 

CCFCam as reference. The POD and FAR are defined in Equations 3.4 to 3.9. 

 

𝑃𝑂𝐷𝑐𝑙𝑒𝑎𝑟 =
𝑎

𝑎+𝑑+𝑔
                                            (3.4) 

𝑃𝑂𝐷𝑏𝑟𝑜𝑘𝑒𝑛 =
𝑒

𝑏+𝑒+ℎ
                                           (3.5) 

𝑃𝑂𝐷𝑐𝑙𝑜𝑢𝑑𝑦 =
𝑖

𝑐+𝑓+𝑖
                                            (3.6) 

𝐹𝐴𝑅𝑐𝑙𝑒𝑎𝑟 =
𝑏+𝑐

𝑎+𝑏+𝑐
                                             (3.7) 

𝐹𝐴𝑅𝑏𝑟𝑜𝑘𝑒𝑛 =
𝑑+𝑓

𝑑+𝑒+𝑓
                                           (3.8) 

𝐹𝐴𝑅𝑐𝑙𝑜𝑢𝑑𝑦 =
𝑔+ℎ

𝑔+ℎ+𝑖
                                          (3.9) 
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Table 3.1. Contingence Table 

Reference Data 

Scenario Clear Broken Cloudy 
Clear a b c 

Broken d e f 
Cloudy g h i 

Source: Reuter et al. (2009)  

Also, for a better analysis of the distributions of the generated data, the 

Kolmogorov-Smirnov (KS) statistical test was used to determine if they differ 

significantly. The test is based on the cumulative distribution function, where if 

the maximum difference between the distributions is less than a threshold, the 

two databases are similar and can be considered statistically the same. 

According to Espinar et al. (2009), the test is done by converting the data to an 

unbiased estimator S(xi) of the cumulative distribution function (CDF), at i = 1...N, 

where N is the population size. For the calculation, it is necessary to find the 

maximum value of the absolute difference (D) between the two CDFs, according 

to Equation 3.10. 

𝐷 = 𝑚𝑎𝑥|𝑆(𝑥𝑖) − 𝑅(𝑥𝑖)|                                       (3.10)  

where R (xi) is the CDF of the reference database. 

In this way, the null hypothesis is formulated so that if D is less than the limit value 

(Vc), the two sets of data have a very similar distribution and, statistically, could 

be considered the same. The critical value depends on N and is calculated 

according to Equation 3.11 with 0.01 significance level (ESPINAR et al., 2009; 

MASSEY, 1951). 

𝑉𝑐 =
1,63

√𝑁
 , 𝑁 ≥ 35                                           (3.11) 

In this part of the analysis the comparison between both distributions was done 

with different time resolutions; 30 minutes for the satellite data and 5-10 minutes 

for the camera data. The difference on the resolutions may imply that even with 

coarser time resolution, the satellite still has similar distribution, and its variability 

may be representative of higher timespans. 
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3.3. Results 

3.3.1. Comparison among CCFCam and CCFSat values 

Table 3.2 presents the frequency distribution for the cloud cover fractions in octas 

produced by the satellite and the all-sky camera images. Figure 3.3 shows the 

histogram of the deviations between CCFSat and CCFCam values. Both 

instruments calculated the same CCF in 59% of the measurements, while in 23% 

(10%) of them, the differences were ± 1 (± 2) octas.  

The Mean Deviation (MD) of -0.02 octas between CCF data provided by 

CCFSat and CCFCam methods was low (0.5% of the mean value of CCFCam). 

Furthermore, the Standard Deviation of 2.2 octas and the Correlation Coefficient 

R of 91.6% denote a good agreement among both methods. Table 3.3 presents 

the contingency table for the three cloud coverage scenarios based on the 

CCFSat and CCFCam results. 

Table 3.2. Density of occurrences between CCFSat and CCFCam. The highlighted numbers 
refer to the cases in which both methods obtained the same result. 

 CCFCam 

Octas 0 1 2 3 4 5 6 7 8 
0 1450 182 59 21 11 2 4 3 1 
1 123 123 80 42 20 17 5 5 1 
2 47 56 45 47 26 18 7 6 1 
3 19 39 35 31 29 22 10 6 4 
4 11 25 20 29 34 32 27 16 10 
5 6 8 17 18 29 40 34 26 16 
6 5 8 17 22 31 35 59 45 52 
7 5 1 7 14 25 42 59 98 238 
8 2 3 10 10 13 28 58 113 1148 

 % 32% 9% 6% 5% 4% 5% 5% 6% 29% 
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Figure 3.3. Frequency histogram for the deviations between cloud cover fraction 
provided by CCFSat and CCFCam in Octas. Positive deviations indicate the 
CCFSat values were larger than CCFCam values. 

 

 
 

Table 3.3. Contingency table for three cloud coverage scenarios provided by satellite 

and all-sky camera methodologies. 
 

CCFCam 

Scenario Clear Broken Cloudy 
Clear 42.1% 3.5% 1.1% 

Broken 4% 5.1% 4.3% 
Cloudy 0.6% 2.9% 36.4% 

 
 
Table 3.4 shows the POD and FAR values for the three cloud scenarios produced 

by satellite and the all-sky camera methods. It can be noted that both methods 

present good agreement for cloudless and overcast sky conditions. The satellite 

method has identified the cloudless scenario in > 91% of the cloudless cases 

indicated by the all-sky camera method. Furthermore, FARbroken around 61% 

means that both methods provided data presenting larger discrepancies for 

partially cloudy scenarios. 

 
Table 3.4. PODs and FARs between CCFSat e CCFCam. 

𝑷𝑶𝑫𝒄𝒍𝒆𝒂𝒓 𝑷𝑶𝑫𝒃𝒓𝒐𝒌𝒆𝒏 𝑷𝑶𝑫𝒄𝒍𝒐𝒖𝒅𝒚 𝑭𝑨𝑹𝒄𝒍𝒆𝒂𝒓 𝑭𝑨𝑹𝒃𝒓𝒐𝒌𝒆𝒏 𝑭𝑨𝑹𝒄𝒍𝒐𝒖𝒅𝒚 

91.1% 44.5% 87.1% 9.9% 61.6% 8.9% 
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In addition, the cumulative distribution functions (CDF) of the two databases were 

analyzed through the Kolmogorov-Smirnov (KS) test. Figure 3.4 shows the two 

functions, where it can be observed that the two distributions have very similar 

behavior. Also, with respect to the test, using CCFCam as a reference, the null 

hypothesis was accepted, with a threshold value of 0.023 and maximum 

difference between the CDFs of 0.019. This result denotes that despite the 

differences in the partially cloudy scenarios, the two datasets can be considered 

statistically the same. 

 

Figure 3.4. Cumulative Distribution Functions of CCFSat and CCFCam.  

 

 

In summary, the larger discrepancies between the cloud cover fractions provided 

by the satellite and by the all-sky camera methods occur for partially cloudy 

scenarios. The disparities can be related to three sources of uncertainty: 

differences on viewing geometry, the spatial resolution and algorithm deficiencies 

(ESCRIG et al., 2013; WERKMEISTER et al., 2015). 

The spatial resolution is also a major source of differences among the CCF 

estimates by the two methods. Convective clouds with areas smaller than 

1 km2 can be misidentified by the visible satellite imagery. Besides that, the 

presence of stratocumulus clouds surrounding small clear sky areas can be a 

source of error. These cloudless areas can be identified by the all-sky camera, 
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but are usually incorrectly classified as totally cloudy by the satellite due to its low 

spatial resolution (WERKMEISTER et al., 2015). 

Concerning the viewing geometry, the parallax error can contribute to the CCF 

deviations. Parallax is a displacement or difference in the apparent position of an 

object viewed along two different lines of sight. For this study, the parallax error 

depends on the relative position of the cloud and the image sensors. 

Consequently, clouds can be positioned in different locations by satellite and all-

sky camera. The parallax error depends only on the cloud location, because the 

satellite is in a fixed position relative to the surface. 

3.4. Discussion and Conclusions 

Two methodologies for estimation of CCF in Cachoeira Paulista, Brazil, were 

compared. The satellite method presented good agreement with the all-sky 

camera for clear sky and overcast conditions, with probabilities of detection of 

91.1% and 87.1%. The major problem occurs in the broken cloud scenarios, with 

probabilities of detection of 44.5%. The R correlation between the methods is 

around 92%. 

Our results presented lower probability of detection for overcast situations, but 

improved results for clear and broken cloud scenarios when comparing it with 

Werkmeister et al. (2015), which obtained probabilities of detection of 94%, 72% 

and 12% for overcast, clear sky and broken clouds, respectively.  Additionally, 

when comparing the uncertainties of the methodologies with Wacker et al. (2015), 

the method proposed here presented 59% of agreement, while for them 52%. 

Additionally, when comparing the results presented here with Luiz et al., (2018), 

the probabilities of detection for overcast and clear sky were similar (93.3% 

against 91.1% and 87.6% against 87.1%, respectively), but for broken clouds 

scenarios the probability presented here of 44.5% were superior against the 38% 

obtained on the paper. It is important to highlight that in Luiz et al., (2018) we 

analyzed only three months of data during the dry season, while here we 

analyzed one full year of data. 

Regarding the satellite method, the most important issue is the spatial resolution, 

which has the major impact on the broken-clouds sky scenarios. Because of the 
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better agreement for cloudy and clear sky conditions, it’s possible to say that the 

cloud masking works properly for large clouds with, at least, the size comparable 

to the satellite image pixel. The apparent larger error may be related to the 

existence of only three scenarios in these analyzes, since small errors at the ends 

of the scenarios can be considered as completely wrong because they are in 

different scenarios. 

Furthermore, the cumulative distributions of the two data sets of data are very 

similar, even with different time resolutions and they can be considered 

statistically the same by the KS test. This result implies that the satellite variability 

is representative of higher time resolutions, at least related with the data 

distribution. 

The method using the all-sky camera needs also to be improved, as it presented 

some deficiencies. For example, the very bright areas around the sun are not 

analyzed by the software. Such issues can be at least partly overcome by using 

some different techniques like sky whiteness corrections in the area around the 

sun and should be a topic for further studies. 
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4 ANALYSIS OF THE SOLAR IRRADIANCE INTRA-DAY VARIABILITY IN 

DIFFERENT BRAZILIAN CLIMATE ZONES2 

4.1. Introduction 

The knowledge on the solar irradiance variability is fundamental and necessary 

for understanding the output variability of a solar power plant. So, it is important 

to find out the best method to evaluate such variability. Different physical 

variables are relevant for different technologies, similarly, different timescales are 

important for different technologies and areas of interest (PEREZ et al., 2016).  

Grid operators are interested in the power output, which reflects the underlying 

variability of solar irradiance. For this, two fundamental parameters can be used: 

global horizontal irradiance (relevant for PV technologies) and direct normal 

irradiance (relevant for concentrating solar technologies). However, these two 

parameters embed both the astronomical cycle of the sun and cloud weather 

effects. To focus on the second it is helpful to use a parameter that normalizes 

the irradiance by the sun geometry, conserving the cloud variability (PEREZ et 

al., 2016). For PV technologies, the clearness index, Kt (ratio between global and 

the extraterrestrial irradiances) and the clear sky index, Kt* (ratio of the measured 

and the clear sky modeled global irradiances) may be good indexes to meet this 

criterion (LAVE; BRODERICK; RENO, 2017; PEREZ et al., 2016; WATANABE; 

OISHI; NAKAJIMA, 2016).   

After the definition of the physical quantity, it is necessary to define how the 

variability should be measured. Watanabe et al. (2016) used the mean, standard 

deviation and sample entropy to evaluate the variability of the surface solar 

irradiance over Japan. Perez et al. (2016) proposed the nominal variability of Kt* 

ramp rates (RR) as a metric to study the solar power variability. The RR, defined 

as the change in magnitude over a timeframe of interest, was also used by Lave 

                                                
2 This chapter is based on the paper: LUIZ, E.W.; MARTINS, F.R.; GONÇALVES, A.R.; 

PEREIRA, E.B.; Analysis of intra-day solar irradiance variability in different Brazilian climate 

zones, as a part of the requirements for obtaining the Ph.D. title in the Earth System Science 

graduate program. Published at Solar Energy, v. 167, p. 210-219, 2018. DOI: 

10.1016/j.solener.2018.04.005. 
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et al. (2015) to quantify the local high-frequency variability based on their 

cumulative distribution functions. 

Besides that, assuming that cloud cover is the major driver of the surface solar 

irradiance, it is useful to examine the cloud variability in an appropriate spatial 

and temporal perspective, in order to get a better comprehension of the 

intermittency issues and to develop mitigation solutions. In a specific location, 

during a partly cloudy day, the one-minute incoming solar irradiance will 

experience very large variability, because of the clouds shadowing the Sun. But, 

the daily total of the incoming solar radiation will experience much less inter-day 

variability. Furthermore, in spatial terms, for larger the areas of interest (footprint), 

lower is the variability of the incoming solar radiation (PEREZ et al., 2016).  

Combining ground-based and satellite measurements is a good way to 

investigate solar irradiance variability over large areas. However, the poor 

temporal and spatial resolutions make it necessary to use temporal downscaling 

and/or spatial interpolation (PEREZ et al., 2016). Many authors have used 

different spatial interpolations to estimate the solar irradiance variability at some 

distance from the measurement sites (ARIAS-CASTRO; KLEISSL; LAVE, 2014; 

ELSINGA; VAN SARK, 2015; PEREZ et al., 2012; YANG et al., 2014). Ngoko et 

al. (2014) and Wegener et al. (2012) used different downscaling methods to 

synthetize data with higher frequency than the available, while Stein et al. (2011) 

synthetized high-frequency data from satellite data in the nearby areas. Hummon 

et al. (2012) and Lave et al. (2017) found associations between 1 hour satellite 

data and higher-frequency ground data for locations in USA and Watanabe et al. 

(2016) characterized the variability in Japan using cloud properties.  

In this work, we propose a methodology to evaluate the variability of the incoming 

surface global solar irradiance using ramp rates of the effective cloud cover 

coefficient estimated from the visible GOES-13 satellite imagery data, using one 

year of data (July/2016 until June/2017). The study investigates the variability of 

ground-based Kt ramp rates in different timescales (1-, 5- and 30-minutes) and 

compared them with ramp rates of the cloud cover coefficient obtained from 30-

minutes time resolution satellite data. The novelty of this work is to use a simple 

method to analyze solar variability using only visible satellite imagery, instead of 

estimating the irradiance on surface. The large extension of the Brazilian territory 
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makes it possible to evaluate the applicability and the performance of the method 

for different climate characteristics, and so, we analyzed data from three different 

climate zones (CPA, SMS and PTR). The methodology is described in Section 

4.2. Section 4.3.1 encompasses the evaluation of the ground-based irradiance 

variability at the 3 ground sites and Section 4.3.2 describes the relationship 

between the satellite cloud ramp rates and the Kt ground-based ramp rates. The 

specific conclusions of Chapter 4 are presented in Section 4.4. 

4.2. Methodology 

4.2.1. Ground-based solar irradiance index 

For this analysis, we used the clearness index (Kt) for the three observation sites 

calculated using the global irradiance data recorded with a one-minute temporal 

resolution, from July/2016 to June/2017, and dividing it by the irradiance at the 

top of the atmosphere at each moment. As mentioned before, the use of Kt allows 

to remove both the diurnal and seasonal cycles to the Earth movements. 

Additionally, the empirical correction, proposed by Perez et al. (1990) was applied 

to remove the effect of the air mass in large solar zenith angles. Equation 4.1 

shows the corrected value (Kt’), where “𝑎𝑚” is the relative air mass. The 

irradiance is more affected by the air mass in moments 

𝐾𝑡′ = 𝐾𝑡 (1.031exp (−1.4/(0.9 + 9.4/𝑎𝑚)) + 0.1) ⁄                  (4.1) 

4.2.2. Ramp rates 

Several metrics can be applied to understand the solar irradiance variability at a 

specific location. The difference between two sequential values of the surface 

incoming solar irradiance were used in several studies (PEREZ et al., 2016; 

WATANABE; OISHI; NAKAJIMA, 2016). However, Kleissl (2013) proposed a 

moving average, as described in Equation 4.2, to avoid the influence of different 

time steps used for the ramp rates evaluation. The ramp rates of Kt’, designated 

from now on as 𝑅𝑅∆𝑡
𝐾𝑡′, were used in this study.  

𝑅𝑅∆𝑡
𝐾𝑡′ =

1

∆𝑡
(∑ 𝐾𝑡′ − ∑ 𝐾𝑡′𝑡

𝑡−∆𝑡
𝑡+∆𝑡
𝑡 )                                 (4.2) 

where ∆𝑡 is the timescale of interest.  
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In this work, we used ∆𝑡 equals to 30, 5 and 1 minutes, hereafter called 𝑅𝑅30
𝐾𝑡′, 

𝑅𝑅5
𝐾𝑡′and 𝑅𝑅1

𝐾𝑡′, respectively.  We also proposed to use the ramp rates based on 

the Ceff values (𝑅𝑅30
𝐶𝑒𝑓𝑓

) as the difference of Ceff values in two successive images 

for each image pixel. The index “30” in the symbol stands for the 30-min temporal 

resolution of the satellite images. 

4.2.3. Variability Score 

The cumulative probability distribution is useful to understand the behavior of the 

ramp rates, 𝑅𝑅𝛥𝑡
𝐾𝑡, in different timescales, although it is hard to exactly compare 

the variability from one place to another, as can be seen in Figure 4.1. It is 

important to highlight that at the vertical axis 𝑃(|𝑅𝑅∆𝑡
𝐾𝑡′

| > 𝑅𝑅0
𝐾𝑡′

) is the 

complementary probability of the typical cumulative distribution functions (CDFs), 

representing the probability (on the vertical axis) of having in the dataset values 

larger than the values of the horizontal axis.  

Figure 4.1. The annual cumulative distributions (𝑃(|𝑅𝑅∆𝑡
𝐾𝑡′

| > 𝑅𝑅0
𝐾𝑡′

)) for one-minute 

ramp rates (𝑅𝑅1
𝐾𝑡′) on the left side and for 30-minutes ramp rates (𝑅𝑅30

𝐾𝑡′) 
on the right side. The probability and Kt’ are non-dimensional. 

 

 

To solve the comparison issue and taking into consideration the high impact of 

large values of 𝑅𝑅𝛥𝑡
𝐾𝑡, Lave et al. (2015) proposed a metric, called Variability Score 

(VS). The VS is defined as the maximum value of the product between the 𝑅𝑅𝛥𝑡
𝐾𝑡 

and its probability, scaled by 100 as shown in Equation 4.3.  

𝑉𝑆(∆𝑡) = 100. max [𝑅𝑅0
𝐾𝑡′

. 𝑃(|𝑅𝑅∆𝑡
𝐾𝑡′

| > 𝑅𝑅0
𝐾𝑡′

)]                       (4.3) 
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where 𝑅𝑅0
𝐾𝑡′

is the 𝑅𝑅𝛥𝑡
𝐾𝑡′ magnitude and 𝑃(𝑅𝑅∆𝑡

𝐾𝑡′
> 𝑅𝑅0

𝐾𝑡′
)  is the probability of 

finding values higher than 𝑅𝑅0
𝐾𝑡′

 on the data set.  

According Lave et al. 2015, usually the VS is generally well correlated with 

number of tap changes on a solar electric plant, however variables like tracking 

setup, cloud velocity and geographic smoothing may lead to some erroneous 

evaluations and need to be better analyzed. The VS(∆𝑡) value ranges from 0 (no 

variability) to 100 (all ramp rates with the maximum value). Larger VS(∆𝑡) 

indicates more variability.   

4.2.4. Statistical analysis 

Three statistical indexes were used in this Chapter to compare the monthly VS’s 

estimated using the irradiance ground-data and the Ceff data. The first statistical 

index used was the Mean Deviation described in Equation 4.4 where n is the 

number of match ups between the two data sets and xm is the difference between 

them. The Mean Deviation (MD) is positive if the irradiance method provided 

lower VS values than the satellite methods. 

𝑀𝐷 =
1

𝑛
∑ 𝑥𝑚

𝑛
𝑚=1                                             (4.4) 

The Root Mean Square Deviation (RMSD) is defined in Equation 4.5, 

where zm and ym represent the different data sets. 

𝑅𝑀𝑆𝐷 =  √
1

𝑛
∑ (𝑧𝑚 − 𝑦𝑚)²𝑛

𝑚=1                                  (4.5) 

The last statistical index used for comparisons between two datasets was the 

Pearson Correlation Coefficient R as defined by Equation 4.6. 

𝑅(𝑦, 𝑧) =
∑ (𝑧𝑚−�̅�)(𝑦𝑚−�̅�)𝑛

𝑚=1

√∑ (𝑧𝑚−�̅�)2.∑ (𝑦𝑚−�̅�)2𝑛
𝑚=1

𝑛
𝑚=1

                             (4.6) 

where zm and ym represent the different data sets and  and �̅� are their average 

value. 
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4.3. Results 

4.3.1. Variability comparison at the three sites 

As mentioned before, the three ground sites are located in areas with very distinct 

climates. While CPA and SMS have very similar annual rainfall, PTR has a much 

dryer climate, close to one third of the precipitation of the first two sites. On the 

other hand, CPA and PTR present two distinct seasons (wet and dry), while SMS 

has an almost constant precipitation all over the year. 

Figure 4.2 shows the ramp rate magnitudes (𝑅𝑅0
𝐾𝑡′) times the annual cumulative 

probabilities 𝑃(|𝑅𝑅∆𝑡
𝐾𝑡′

| > 𝑅𝑅0
𝐾𝑡′

) scaled by 100 for 1-min (𝑅𝑅1
𝐾𝑡′) and 30-min time 

steps (𝑅𝑅30
𝐾𝑡′) for the three ground measurement sites. We omitted 𝑅𝑅5

𝐾𝑡′ from the 

comparison, because the plot has very similar behavior with 𝑅𝑅1
𝐾𝑡′. Therefore, the 

VS in PTR is much higher than in CPA and SMS for 1-min and 5-min timescales. 

This could be related to the presence of a larger number of small clouds in 

Petrolina, even in dry conditions. Furthermore, for the 30-min timescale, the VS 

values are very similar in the three sites, which reinforces the smoothing effect 

attenuating the variability when analyzing larger timespans. Besides that, it is 

important to highlight that the VS(∆𝑡) for all the situations occurs for 

𝑅𝑅0
𝐾𝑡′ between of 0.1 and 0.2, which shows they have the larger impact.  

 

 

 

 

 

 

 

Figure 4.2. Annual cumulative probabilities 𝑃(|𝑅𝑅∆𝑡
𝐾𝑡′

| > 𝑅𝑅0
𝐾𝑡′

) multiplied by the ramp 

rate magnitudes 𝑅𝑅0
𝐾𝑡′ values scaled by 100 for time-steps of 1-minute 

(𝑅𝑅1
𝐾𝑡′) on the left and 30-minutes (𝑅𝑅30

𝐾𝑡′) on the right for the three ground 
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measurement sites. The dots at the maximum values of the curves are the 
VS(∆𝑡) values for each site. The probability and Kt’ are non-dimensional.  

  

 

Figure 4.3 presents a comparison of the annual VS(∆𝑡) index for different 

timescales (∆𝑡) at the three ground measurement sites. We can note that the PTR 

has a much higher VS(∆𝑡) index from 1 to 15 minutes, while from 20 until 30 the 

three sites have more similar VS values. It is also important to highlight that CPA 

and SMS have very similar VS(∆𝑡) for ∆𝑡 from 1 to 15, but for longer ∆𝑡, the VS 

values for CPA gets closer to PTR faster than SMS. This issue could be related 

to climate similarities between CPA and PTR like the two distinct wet and dry 

seasons. 

Moreover, it is expected that the 𝑅𝑅𝛥𝑡
𝐾𝑡′ values increase with Δt, due to the longer 

time interval over which Kt’ can variate from the previous value (LAVE; KLEISSL; 

ARIAS-CASTRO, 2012). So, since VS(∆𝑡) is based on the 𝑅𝑅𝛥𝑡
𝐾𝑡′ probability 

distribution, it is also expected to increase for larger Δt. Nevertheless, it is not 

observed in PTR. Figure 4.3 shows that the VS(∆𝑡) has similar values from 5 to 

30 minutes ∆𝑡 in PTR, which reinforces the very high short-term variability there.  

 

 

 

Figure 4.3. Annual Variability Score (VS) for different time steps (∆𝑡) used in the ramp 
rates evaluation at the three ground sites. VS is non-dimensional. 
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Figure 4.4 presents similar plots as presented in Figure 3.3, but using only one-

month periods at the three ground sites. In CPA and PTR, the red line stands for 

a month in the dry season, the blue line stands for a month in the wet season and 

the yellow line for a month in between. It’s possible to see that the wet season 

showed the highest Kt’ variability, which is related to more convection activity in 

this season. 
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Figure 4.4. Monthly cumulative probabilities 𝑃(|𝑅𝑅∆𝑡
𝐾𝑡′

| > 𝑅𝑅0
𝐾𝑡′

) multiplied by the ramp 

rate magnitudes 𝑅𝑅0
𝐾𝑡′ values scaled by 100 for time-steps of 1-minute 

(𝑅𝑅1
𝐾𝑡′) on the left and 30-minutes (𝑅𝑅30

𝐾𝑡′) on the right, in CPA (first line), 
PTR (second line) and SMS (third line). The dots at the maximum values of 
the curves are the VS(∆𝑡) value for each month. In CPA and PTR, the red 
line stands for a month in the dry season, the blue line stands for a month in 
the wet season and the yellow line for a month in between. SMS has no 
distinct wet and dry seasons. The probability and Kt’ are non-dimensional. 

  

  

  

 

On the other hand, for SMS, with no distinct wet and dry seasons, the difference 

between the months can be related to different cloud types. In austral winter (red 

line), most of the clouds are related to the passage of cold fronts, while in summer 
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(blue line) most of the clouds are related to local convection. The local convection 

creates broken clouds fields and, therefore, larger 𝑅𝑅1
𝐾𝑡′variability. Small clouds 

have less influence on the 𝑅𝑅30
𝐾𝑡′ distribution probabilities, thus, resulting in a 

similar VS(30) in both summer and winter months. The yellow line stands for a 

transition season (spring) presenting fewer passages of cold fronts and less 

intense local convection. 

4.3.2. Relationship between satellite and ground based variability 

After the analysis of the solar irradiance variability using ground measurements, 

we investigated their relationship with the observed variability of 𝑅𝑅30
𝐶𝑒𝑓𝑓

 obtained 

from Ceff satellite data. Figure 4.5 shows the complementary probability 

distribution for 𝑅𝑅30
𝐶𝑒𝑓𝑓

 (left) and the plot for 𝑅𝑅30
𝐶𝑒𝑓𝑓

 times its probability scaled by 

100 (right) for the three ground sites.  

Figure 4.5. Ceff ramp rates annual cumulative distributions (𝑃(|𝑅𝑅∆𝑡
𝐶𝑒𝑓𝑓

| > 𝑅𝑅0
𝐶𝑒𝑓𝑓

)) on 

the left and the same cumulative distribution multiplied by the Ceff ramp rate 

magnitudes (𝑅𝑅0
𝐶𝑒𝑓𝑓

) scaled by 100 on the right, at the three sites. The dots 

at the maximum values of the curves are the VS for each ground site. The 
probability and Ceff are non-dimensional. 

   

The first step was to compare the monthly and annual VS(Δt) values obtained 

using 𝑅𝑅30
𝐶𝑒𝑓𝑓

and 𝑅𝑅30
𝐾𝑡′. Figure 4.6 shows the scatter plots of VS(30) values 

between 𝑅𝑅30
𝐾𝑡′ and 𝑅𝑅30

𝐶𝑒𝑓𝑓
at the three ground sites. It can be noticed that there 

is an almost linear relationship for all sites, with a slight overestimation from 

𝑅𝑅30
𝐶𝑒𝑓𝑓

. Table 4.1 presents the Pearson correlation, the Bias deviation and the 

Root Mean Square deviation (RMSD) for this comparison. PTR had the largest 

Pearson correlation (0.93) and the lowest RMSD. The lowest correlation (0.67) 
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was obtained using data from CPA, but the Bias deviation was the lowest there. 

The low correlation in CPA needs to be better investigated, but could be related 

to weather characteristics or the high number of burning biomass events close to 

the site during the dry season, which may interfere in the satellite analysis and in 

the solar irradiance at surface. Also, January may be an outlier month in CPA 

and if we take the month out of the analysis, the Pearson correlation increases to 

0.84, similar to the ones obtained at the other two sites. 

Figure 4.7 presents a comparison between the monthly and annual VS(∆𝑡)  

values for 𝑅𝑅5
𝐾𝑡′ and 𝑅𝑅1

𝐾𝑡′. Table 4.1 also presents the Pearson correlation, the 

Bias deviation and the Root Mean Square Deviation (RMSD) for these 

comparisons. The PTR site presented the smaller deviations and the largest 

correlation. There is a high decrease in the correlation for 1-min time step. This 

is an expected result, because the satellite cloud cover data have 30-min time 

resolution, which increases the smoothing effect and may be too poor to describe 

high frequency changes caused by clouds.  

Besides that, the deviations are supposed to increase for the 𝑅𝑅𝛥𝑡
𝐾𝑡′ calculated for 

lower time steps (𝛥𝑡), because VS is larger for longer time steps. As we can notice 

in Table 4.1 and Figure 4.7, this behavior is observed CPA and SMS, but not at 

PTR, which has very low deviation and high correlation in the comparison 

between the VS for 𝑅𝑅30
𝐶𝑒𝑓𝑓

 and 𝑅𝑅5
𝐾𝑡′. This fact reinforces the earlier remarks 

from Figure 4.3, where we can observe similar VS in PTR for time steps longer 

than 5 minutes, but now for the monthly analysis.  

Table 4.1. Statistical comparison between the VS values obtained from the Cloud Cover 
coefficient (Ceff) provided by satellite images and the ground-based Kt’ 
values at the three ground sites. 

 30 minutes 5 minutes 1 minute 

 R MD RMSD R MD RMSD R MD RMSD 

CPA 0.67 0.33 0.63 0.59 1.30 1.41 0.56 2.39 2.46 

SMS 0.89 0.62 0.74 0.77 1.30 1.41 0.64 2.32 2.42 

PTR 0.93 0.40 0.51 0.8 0.33 0.62 0.66 1.48 1.62 
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Figure 4.6. Scatter plot between the VS(30) of the cloud cover coefficient (Ceff) and the 
VS of 30-minutes ramp rates of Kt’ at the three sites. The blue dots are the 
monthly VS and the red dots are the annual VS. VS is non-dimensional. 
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Figure 4.7. Scatter plot between the VS(30) for cloud cover coefficient (Ceff) and the 5-
minutes (left column) and 1-minute (right column) VS for Kt’, at CPA (first 
line), SMS (second line) and PTR (third line). The blue dots are the monthly 
indexes and the red dots are the annual indexes. VS is non-dimensional. 

  

  

  

 

4.4. Discussion and conclusions 

The solar irradiance variability over three different regions of Brazil were 

investigated using the Variability Score (VS), obtained using local ground-

irradiance data, and the effective cloud cover obtained from GOES-13 satellite. 
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One year of data was used to encompass the different weather characteristics on 

those places.   

As expected, the humid months have the highest variability because of the larger 

number of clouds in the sky. However, the driest location evaluated in this study, 

Petrolina (PTR), presented larger ramp rates variability than the other two ground 

sites (Cachoeira Paulista - CPA and São Martinho da Serra - SMS) for time steps 

shorter than 15-minutes. This fact can be of high concern for the Brazilian energy 

planning, because PTR is located in the region pointed out as the best for solar 

power generation (PEREIRA et al., 2017). This large variability may be related to 

the presence of a large number of clouds in the region, as we can see in Figure 

4.8. The Figure presents a picture with a very common sky condition in the Caicó 

(RN) site, which have similar climate characteristics with PTR.  Anyhow, the 

annual 30–min ramp rates variability is very similar for all three sites due to 

smoothing effects when analyzing longer time steps. 

Figure 4.8. Picture of the Sky of Caicó (RN) located in the same region of Petrolina 
(PTR). 

  

Furthermore, the VS obtained for CPA ground site is very similar to the VS for 

the SMS site for the ramp rates in shorter time steps (≤ 15 min). By the contrary, 

for longer time steps (in the 20- to 30-min range), the VS values in CPA site are 

closer to the ones obtained in PTR. This fact may be related with the weather 
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similarity between CPA and SMS in the wet season and CPA and PTR in the dry 

season. 

With respect to the comparison of solar variability for 30-min time steps, using the 

VS provided by the ground-based measurements and the satellite, the results 

presented good agreement. Our findings indicate that the variability of the cloud 

coverage in a region is representative of the Kt’ variability (and hence solar 

production), without the need for costly and time demanding field measurements 

or modeling the solar irradiance. The CPA site has the lowest Pearson correlation 

(0.67) between the monthly VS values, but the smaller Bias. The reason to such 

low correlation needs to be better investigated, but may be related to local 

weather characteristics or data acquisition issues in January 2017. 

Using the same database, we investigated the relationship between the VS of 

Ceff ramp rates in 30-min time step and Kt’ ramp rates at lower time steps. For 

the 5-min Kt’ ramp rates, there was a high Pearson correlation (up to 0.80). An 

interesting outcome was that the magnitude of the VS index values in PTR was 

very similar for 5 and 30 minutes. It was not intuitive because the index is 

proportional to the ramp rate values, usually higher for 30-min time steps. This 

fact reinforces the high variability in the PTR site for smaller timescales. 

Concerning the ramp rates for 1-min time steps, the agreement with the VS 

obtained using satellite 30-min resolution data was not satisfactory. The best 

Pearson correlation was equals to 0.66 and RMSD up to 2.46. The correlation 

and the deviations are supposed to be worse for large differences between the 

satellite and ground data timescales, because the low time resolution presented 

by satellite data increases the smoothing effect and may be not enough to 

describe high frequency variability caused by clouds. A solution for this problem 

may be to analyze some neighbor pixels around the sites. This larger area of 

analysis, together with cloud motion information, can provide information on 

clouds about to cover the site and thus, some predictive information. However, 

this is subject for future work. Besides that, downscaling methods to synthetize 

higher frequency cloud cover data with similar characteristics may be an 

important tool to a more precise characterization of the solar irradiance variability. 
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The most important result achieved was the development of a simple 

methodology to evaluate the surface solar irradiance variability using cloud cover 

obtained from only visible satellite imagery in locations where there is no ground 

data available. We proved to be possible to get reliable information on solar 

irradiance variability using the proposed methodology instead of using radiative 

transfer models that demand larger computational resources and can present 

large uncertainties. 
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5 FINAL REMARKS 

The focus of this thesis was the development of a methodology for the analysis 

of the cloud cover variability and, as consequence, of the solar resource 

variability. The importance of this methodology is the capacity to find hotspots for 

using solar power technologies, related also with the variability of the resource. 

The method proposed here uses geostationary satellite imagery and so, is able 

to analyze the entire Brazilian territory. To do so, first we analyzed the 

representativeness of the cloud cover fraction obtained with satellite imagery 

related with ground-based All-Sky camera results, which has better spatial and 

time resolutions. After that, we compared the satellite cloud cover variability with 

ground-based global solar irradiance variability, in different Brazilian climate 

regimes, besides of an analysis of the irradiance variability on the same sites. 

This final chapter synthetizes the major findings of the thesis and discusses their 

importance. Besides that, proposals and recommendations for the future work 

are presented here to deepen the knowledge on the solar resource variability 

over Brazil. The chapter is divided in 2 sections, section 5.1 present the major 

findings of each chapter and section 5.2 discusses the future research needs. 

5.1. Major finds 

In Chapter 3, we analyzed the confidence of the cloud cover fraction provided by 

satellite analysis in an area of ~500 km² to represent the cloud cover fraction 

provided by All-Sky camera. The satellite method presented good agreement with 

the all-sky camera method, with Pearson R correlation around 92%. The best 

agreement was found for the clear sky and overcast conditions, with probabilities 

of detection equals to 91.1% and 87.1%, respectively. The major discrepancy 

occurred in the broken cloud conditions when the probability of detection was 

44.5%.  

In addition to the direct comparison between methods, the most important result 

presented in Chapter 3 was the statistical analysis of the cumulative distribution 

functions of both datasets. The cumulative distributions showed that the two data 

sets are very similar, even for different time resolutions. The KS test 

demonstrated that they can be considered statistically the same, i.e. the cloud 
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cover variability obtained from satellite images can provide representative 

information of cloud cover variability observed from the ground in finer time 

resolutions. 

The most important issue related to the satellite method is its low spatial 

resolution, which has the major impact on the broken-clouds sky scenarios and 

implies that the cloud masking works better for large clouds with, at least, the size 

comparable to the satellite image pixel. Despite the low resolution, the satellite 

method to evaluate the cloud cover may provide reliable information about its 

variability. 

Differently from Chapter 3, Chapter 4 describes a statistical evaluation only in the 

pixel over the measurement site. The analysis was done using the VS index 

based on the cumulative distribution functions of the ramp rates of cloud cover 

and represent its variability. 

First, we analyzed the VS of the ground-based global irradiance ramp rates in 3 

different Brazilian climate regimes. The results confirmed that the driest periods 

have lower solar irradiance variability, due to the lower nebulosity. However, this 

fact is not necessarily valid for different climates. As we found out, Petrolina, the 

driest place, has the higher variability for smaller time steps, probably due to the 

high occurrence of small clouds passing in front of the Sun. This fact can be of 

high concern for the Brazilian energy planning, because the site is located in the 

best region for power generation using solar technologies (PEREIRA et al., 

2017). Anyhow, for 30–minutes time step, the ramp rates variability is very similar 

in all three sites, what shows the smoothing impact when analyzing larger 

timescales. 

After that, we compared the VS index for the satellite cloud cover variability with 

the variability of the solar resource in surface. The results presented good 

relationship, with Pearson R correlation between 0.67 and 0.93, depending on 

the site, when both datasets have the 30-minutes time resolution (time resolution 

of the satellite images). However, for lower time steps of the solar irradiance ramp 

rates the correlation decreased to values smaller than 0.66 in all sites. This 

decrease was already expected, because of the smoothing effect when analyzing 
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the 30-minutes time resolution of the satellite data, which ends up masking the 

variability of the smaller time steps.  

The most important result presented in Chapter 3 was the development of a 

simple methodology to evaluate the surface solar irradiance variability using 

cloud cover obtained from the satellite images, without the necessity of modeling 

the solar irradiance at surface. Only the visible geostationary imagery proved 

itself to be enough to characterize the solar energy variability on surface with 

sufficient accuracy. 

In summary, the main achievement of this thesis was to provide a simple 

methodology for analyzing the variability of the solar resource using only 

geostationary satellite data, what can be of great importance for the future energy 

planning in Brazil and other countries presenting large territories. 

5.2. Proposals and Recommendations for Future Research  

This study was the first step to increase the comprehension on the influence of 

typical cloud cover on the surface solar irradiance, in some Brazilian climate 

zones. It is important to continue advancing the investigation in other climate 

zones than the ones that have already been analyzed in this research. One 

important example to be cited would be the Midwest region of Brazil, where a lot 

of biomass burning events happen every year during the dry season releasing 

high concentration of aerosols to the atmosphere and affecting the cloud cover 

determination by satellite images. The Brazilian Northern region is another 

important area to be investigated due to the presence of the Amazon rainforest, 

and a very hot and humid tropical climate. 

The key limitation of the methodology proposed here is the satellite time 

resolution of 30 minutes. Even though this timespan provides the required 

information for grid balancing of distribution systems, it does not provide the 

required precision necessary for controlling and solving voltage control issues by 

operators of single or centralized plants. To overcome this issue, downscaling 

methods to synthetize data with similar characteristics may be an important tool 

to a more precise characterization of a region.  



40 
 

Additionally, an important fact to be highlighted is the recent launch and activation 

of the GOES-16 satellite, managed by NOAA. The new satellite provides images 

in the two visible bands with spatial resolution of 500m and 15–min time 

resolution. The new satellite data will contribute in the improvement of the 

methodology, bringing more representativeness and accuracy to the cloud cover 

coefficient data.  

The future research may lead to an improvement of the Brazilian Atlas for Solar 

Energy (PEREIRA et al., 2017) presenting also the intermittency of the solar 

energy based on the cloud cover influence. This information will be of great 

importance for the energy planning in Brazil with higher level of solar energy 

penetration on the electricity grid. 
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