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Abstract 

The fast increase in importance of the solar energy resource 
as viable  and promising source of renewable energy has 
boosted research in methods to evaluate the short-term 
forecasts of the solar energy resource. There is an increase on 
demand from the energy sector for accurate  short-term 
forecasts of solar energy resources in order to support the 
planning and management of the electricity generation and 
distribution systems. The Eta model is the mesoscale  model 
running at CPTEC/INPE for weather forecasts and climate 
studies. It provides outputs for solar radiation flux at the 
surface, but these solar radiation forecasts are  greatly 
overestimated. In order to achieve more reliable  information, 
Artificial Neural Networks (ANN) were used to refine short-
term forecast for the downward solar radiation flux at the 
surfaceprovided by Eta/CPTEC model. Ground 
measurements of downward solar radiation flux acquired in 
two SONDA sites located in Southern region of Brazil 
(Florianópolis and São Martinho da Serra) were used for 
ANN training and validation. The short-term forecasts 
produced by ANN have presented higher correlation 
coefficients and lower deviations. The ANN removed the 
bias observed in solar radiation forecasts provided by 
Eta/CPTEC model. The skill improvement in RMSE was 
higher than 30%when ANN was used to provide short-term 
forecasts of solar radiation at the surface in both 
measurement sites. 
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Introduction  

The scientific community points out that the fossil 
fuelexpenditure is the major reason of the observed 
growth of the greenhouse gases concentrationsin 
atmosphere along the last century [1]. Developed 
countries and advanced economies have been charged 
for the environmental damages due to consumptionof 
conventional energy sources to meet their energy 
demand. However, emerging economies such as Brazil, 

India, China, and Russia are increasingly sharing this 
responsibility as a result of their growing demand for 
energy to support their fast growing economic 
development 

The commitment to reduce the emissions of carbon 
dioxide (and other greenhouse gases) established at the 
Kyoto Protocol and the perspectives of oil depletion in 
next decades are keyfactors to boostthe research and 
development onalternatives and renewable energy 
sources such as solar and wind [2, 3]. 

Furthermore, the search for improvement on energy 
security has been driving the government policies and 
incentive programs to stimulate the employment of 
alternative renewable energy sources even in countries 
with large share of clean energy in their electricity 
generation matrix. For example,in Brazil, where 
hydroelectric energy is responsible for more than 70% 
of the electricity matrix, an energy shortage happened 
in 2001 due to very low precipitation during the wet 
seasonof the previous year [4]. After this event, 
Brazilian government created incentive programs for 
renewable energy sources like wind energy. 

The solar energy is one of the promising alternativesin 
Brazil since most of its territory is located in the inter-
tropical region where solar energy resources are 
accessible all year round [5]. The main obstacles to the 
commercial exploitation of solar energy resources are 
the highest cost compared to the conventional 
electricity generation technologies, lack of information 
on resource assessment and variability, and 
thedeepdependencyon the weather and climate 
conditions [4].  The investment costs are expected to fall 
during the next decades due to technological advances 
and market demands [6]. The growing market for solar 
energy leads to an increase on the demand for more 
reliable information concerning to solar resources, 
including its spatial and temporal variability in short 
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and long terms.In addition, the management of 
electricity generation and distribution systems is also 
asking for more accurate short-term solar energy 
forecasts. 

Several methodologies were developed in order to 
provide solar radiation forecast in high temporal 
resolutions and short-term horizons [7, 8]. Some of 
them use numerical weather models (NWP). Such 
models have radiation parameterization codes to 
simulate the radiative atmospheric processes. 
Nevertheless, solar irradiation forecasts provided by 
NWP models for one or two days in advance have 
shown large deviations from solar irradiationdata 
acquired at surface [9]. The major factors responsible 
for such deviations are related to the solar irradiation 
dependence on clouds and weather conditions which 
intrinsically involve non-linear physical processes [10]. 

Absorption and scattering interactions are the 
atmospheric radiative processes that attenuate the solar 
radiation flux. Therefore, the atmospheric optical 
properties should be known in order to correctly 
evaluate the solar irradiation at any specific site and 
time. Clouds are the main factor that modulates the 
solar radiation incidence at the surface [11, 12, 13, 14, 
15]. Atmospheric aerosols also have an important role 
in atmospheric radiative processes, mainly in some 
regions where anthropogenic emissions from biomass 
or fossil fuel burning takes place.  

The Eta/CPTEC mesoscale model runs operationally in 
the Center of Weather Forecast and Climate Studies at 
Brazilian Institute for Space Research(CPTEC/INPE)and 
provides short-term forecasts for many meteorological 
variables, including surface solar irradiation. However, 
the references [11] and [12] showed that Eta/CPTEC 
model systematically overestimates the surface solar 
irradiation, as well as the sensible and latent heat fluxes 
at surface. A common issue in numerical atmospheric 
radiation codes is the excess of the incoming shortwave 
radiation at the surface as a result of the deficient 
parameterization of extinction interactions with water 
vapor,atmospheric aerosols and clouds.Several 
methodologies were published in order to improve 
solar forecasts provided by numerical weather models 
[9, 16, 17, 18]. 

This work aimsto presentamethodology to reduce 
deviations of solar irradiation forecasts provided by 
Eta/CPTEC model by using a statistical post-processing 
applied to the model outputs. This paper presents the 
results obtained when Artificial Neural Networks 

(ANN’s) were used as statistical tool to refine the solar 
radiation forecast provided by Eta/CPTEC model. 

Artificial neural networks (ANN) are data-driven 
instead of model-driven techniques once the results 
provided by them depend on the available data used to 
feed the ANN. Relationships between predictors (input 
data) and predictions are developed after building a 
system which simulates the physical processes in 
atmosphere. Artificial neural networks have been 
applied in renewable energy research for modeling and 
design solar systems and to provide short-term 
forecasts for energy resources [19]. Reference [20] 
indicated that the ANN systems are able to predict the 
solar radiation time series more effectively than the 
conventional procedures based on the clearness index. 
The authors observed that the forecasting ability can be 
further enhanced with the use of additional 
meteorological parameters like temperature and wind 
direction. References [21] and [22]discussed different 
methodologies using ANN to provide short-term 
forecasts for solar radiationby extracting knowledge 
from a long ground data series. Reference [23] 
compared some statistical models and ANN systems 
using meteorological data as input data. The authors 
concluded that ANN systems were a promising 
alternative to the traditional approaches for estimating 
global solar radiation, especially in cases where solar 
radiation measurements are not readily available.  

This paper presents an attempt to get better 
predictability for the solar energy resources using 
operational Eta/CPTEC model and it constitutes an 
important application of the meteorology science to the 
energy planning and decision-making processes in 
energy sector. The target is to provide more precise and 
reliable information on future availability of solar 
resources in order to optimize electricity generation and 
distribution systems.   

Methodology 

Forecasting solar irradiation depends on prospecting 
the future atmospheric conditions. Despite the intrinsic 
uncertainties, NWP models provide information about 
many meteorological variables, including solar 
radiation data and atmospheric optical properties for 
several future timeframes. However, earlier studies 
demonstrated that solar radiation data provided by 
such models presents a large bias making its use 
inappropriate to electricity system management where 
several solar power plants are connected [10, 16, 17, 18]. 
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This work employed the weather forecast outputs 
provided by the Eta/CPTEC model together 
withenvironmental data to feed Artificial Neural 
Network (ANN). The main goal was to achievea short-
term forecast for solar irradiation with lower deviations 
than the ones provided by the Eta/CPTEC model. The 
solar radiation data acquired in two SONDA ground 
sites located in the Southern region of Brazil was used 
as reference for training and performance evaluation of 
the ANN. 

Model Eta/CPTEC 

The Eta/CPTEC model is used for operational weather 
forecasting, climate investigation, regional climate 
change studies and research onseveral 
issueslikepollutanttransport [24]. The Eta model, 
whichhas been running at CPTEC since 1996, was set 
up and optimized to the South America atmospheric 
conditions. The Eta/CPTEC model runs routinely for 
South America continent and neighboring oceans: 
latitudes from 50.2ºS to 12.2ºN, and longitudes from 
83ºW to 25.8ºW. The horizontal resolutionequals to 
40km and 38 vertical layerswere used for this study. 

The Eta/CPTECmodel employsthe “finite difference” 
scheme to solve the equations system that describes the 
physical processes inatmosphere. The model uses the 
vertical coordinate “Eta”, η, defined as: 

  (1) 

where pt is  the pressure at the top of the model 
atmosphere, pref is the reference pressure to the vertical 
profile, and psfc and zsfc are the pressure and height of 
the lower boundary surface, respectively.The Eta 
coordinate was adopted to reduce the large errors 
observed in several numeric weather forecast models 
that use the sigma surfaces [12]. These deviations 
arerelated to the determination of the horizontal 
pressure gradient force, as well as the advection and the 
horizontal diffusionon a steeply sloped coordinate 
surface [25, 26].  

The discretization of the space domain uses the Semi-
Staggered Arakawa E-grid on the horizontal and the 
Lorenz grid on the vertical. The radiation modeling 
uses the schemes described in [27] for shortwave 
radiation, and in [28] for long wave radiation. More 
detailed descriptions about the physical 
parameterizations adopted in Eta/CPTEC model can be 
found in [26, 29,30, 31]. 

The Eta/CPTEC model was executed using initial 
conditions at 00UT provided by NCEP analyses. The 
CPTEC Atmospheric Global Circulation Model (AGCM)  
provided the lateral boundary conditions.  

The outputs provided by Eta/CPTEC model for 2001 till 
2005 were used.The output file contains forecasts for 58 
atmospheric variables at the synoptic timeframes (6, 12, 
18 and 24UT) for 7 days in advance. The model 
provided the total amount in atmospheric column for 
forty-nine variables, and vertical profile values at 19 
atmospheric pressure levels for the remaining nine 
variables.Only 33 out of the 58 atmospheric variables 
were used in this study. All vertical profile data were 
discarded together with 16 variables not representative 
of the atmospheric condition like topography, soil 
temperature and humidity for levels under surface. 

Table I presents a complete list of model output data 
used for this work with a short description ofthem. 
Instantaneous values at each synoptic time were 
recorded for most of the data. However, average values 
regarding to the 6-hour period before each synoptic 
time were stored for some of the meteorological output 
variables, such as “ocis”. 

SONDA network 

SONDA (Brazilian System for Environmental Data 
applied to the Energy Sector) is a network of ground 
measurement sites, operated and managed by INPE. 
The goal is to acquire reliable surface solar irradiation 
and wind data at different climate areas in Brazil in 
order to develop, improve and validate numerical 
models used for renewable energy resources 
assessment and environmental research. The SONDA 
database will provide valuable information applied to 
the research on the energy meteorology in Brazil. 

In this work, the SONDA ground data acquired at two 
SONDA sites was used for the ANN training and 
configuration as described later in this paper. Besides 
that, ground data were used to evaluate the deviations 
presented by short-term forecast provided by both 
methodologies: Eta/CPTEC model and ANN. Both 
measurement siteswerelocated in the Brazilian 
Southern region: 

 São Martinho da Serra (SMS) – 29.44ºS/53.82ºW. 

 Florianópolis (FLN) – 27.60ºS/48.52ºW; 

Fig. 1 shows the location of measurement sites of 
SONDA network featuring SMS and FLN sites. These 
both sites were chosen in order to evaluate the 
performance of ANN and Eta/CPTEC model in two 
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different climate conditions. SMS is located in the 
continental area at 500m above the sea level. FLN is 
located at the coastal area of Brazilian Southern 
regionpresenting the largest total precipitation along 
the year in Brazilian territory. The SMS has been 
collecting data since June 2004 and FLN has been 
acquiring data since 1995.The other SONDA sites are 
more recent and have smaller databases.The SONDA 
website (http://sonda.ccst.inpe.br) presents all 
information aboutmeasurement sites and describes the 
data quality assurance program. 

For this work, data acquired from January/2001 to 
October/2005 in FLN and from July/2004 to 
October/2005 in SMS were used. The Kipp&Zonen CM-
21 pyranometers [32] were used to acquire global solar 
irradiation data. One-minute average solar irradiation 
data wasstored and its quality was checked. Both sites 
take part in Baseline Solar Radiation Network (BSRN) 
and meet all the quality criteria established by World 
Meteorological Organization (WMO).  

 
FIGURE 1 LOCATION OF GROUND SITES OF SONDA NETWORK. 
FLORIANÓPOLIS AND SÃO MARTINHO DA SERRA WERE USED 

FOREVALUATION OFSHORT-TERM FORECASTS. 

After data-quality verification, 1150 days for FLN and 
472 days for SMS were available for this work. The 
ground database was divided into 3groups as follows:  

 Training group: with 575 days for FLN and 236 
days for SMS; 

 Validation group: with 288 days for FLN and 118 
days for SMS; 

 Investigation group: with 287 days for FLN and 
118 days for SMS.  

The training group was used for the ANN training. The 
validation group was employed to evaluate and 
establish the end of the training step. The investigation 
group was used to evaluate the reliability of ANN 
outputs. More details on each these three steps are 
described latter in this paper. 

Data Management 

As explainedearlier, the solar and meteorological 
database used to feed ANN comprises the output data 
provided by the model Eta/CPTEC (Table I). In addition, 
other three variables were calculated in order to supply 
ancillary information for the ANN: solar radiation flux 
at TOA (STOA), mean air mass (airm), and mean solar 
zenith angle (szam). Altogether, 36 variables were used 
as ANN predictors. 

As described on Table I,the solar irradiation 
dataprovided by the Eta/CPTEC model, “ocis”, 
represents the 6-hour average solar irradiation. In order 
to achieve the same time-scale, the solar irradiation data 
acquired in FLN and SMS sites were averaged over the 
same 6-hour intervals. In summary, ground and model 
data of solar irradiationrepresents the total energy in 
the 6-hour period and they are expressed in MJ.m-2 
(mega joules per squared meter).  

The 6-hour average solar radiation flux at the top of the 
Earth’s atmosphere (STOA) was calculated taking into 
consideration local latitude, solar zenith angle, 
eccentricity and solar declination [13, 14]. As the 
ground solar irradiation data and “ocis”, the STOA 
solar radiation flux was also expressed in MJ.m-2.  

Relative humidity, atmospheric pressure, air 
temperature, wind velocities and all other 
instantaneous data, provided by Eta/CPTEC model for 
synoptic time (Table I),were averaged by taking the two 
consecutive values. The averages were assigned to the 
second synoptic timein order to set up the databasein a 
similar way used for ground data. This procedure aims 
to better represent theatmospheric and meteorological 
variability in the 6-hour interval. 

In addition, the solar zenith angle (szam) and the air 
mass (airm) were obtained and stored for the same 6-
hour intervals. Thus, the “ocis” data and all 36 variables 
used to feed ANN havethe same temporal resolution 
and represent the equivalent timeframes. 

The 36 predictors and the ground data are disposed 
into four timeframes each day: 6:00, 12:00, 18:00 and 
24:00UT. Each timeframe represents the corresponding 
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time interval: 0-6UT (Rad06UT), 6-12UT (Rad12UT), 12-
18UT (Rad18UT), and 18-24UT (Rad24UT). This paper 
only presents results for the Rad18UT timeframe. The 

Rad18UT was chosen because the highest fraction (63% 
– 80%) of solar radiation flux occurs during the 12-18UT 
intervals throughout the year at both ground sites [35]. 

TABLE 1 THE METEOROLOGIC DATAUSED AS PREDICTORS  IN ANN. ALL DATA WAS PROVIDED BY MODELETA/CPTEC 

VARIABLE  DESCRIPTION (UNITS)  KEY FEATURES 

rh2m Relative humidity at 2m-height (0 to 1 – adimensional)  Instantaneous values 

pslc Pressure at surface (hPa) Instantaneous values 

tp2m Temperature at 2m-height above the surface (K)  Instantaneous values 

dp2m Dew Point Temperature at 2m above the surface (K)  Instantaneous values 

u10m Zonal wind at 10m-height above the surface (m s-1) Instantaneous values 

v10m Meridional wind at 10m-height above the surface (m s-1) Instantaneous values 

wnds Wind velocity at 10m-height above the surface (m s-1) Instantaneous values 

prec Total rainfall (kg m-2 dia-1) Total in the 6h period 

prcv Convective rainfall (kg m-2 dia-1) Total in the 6h period 

prge Large scale rainfall (kg m-2 dia-1)  Total in the 6h period 

clsf Latent Heat Flux  at the surface (MJ m-2)  Average value in the 6h period 

cssf Sensible Heat Flux at the surface (MJ m-2)  Average value in the 6h period 

ghfl Heat Flux in the soil (W m-2)  Average value in the 6h period 

tsfc Surface Temperature (K)  Instantaneous values 

qsfc Specific humidity at the surface (kg(H2O) kg(air) -1) Instantaneous values 

lwnv Cloud cover Index for low clouds (0 a 1 - adimensional)  Instantaneous values 

mdnv Cloud cover Index for average clouds (0 a 1 - adimensional)  Instantaneous values 

hinv Cloud cover Index for high clouds (0 a 1 - adimensional)  Instantaneous values 

cbnt Mean Cloud cover Index (0 a 1 - adimensional)  Instantaneous values 

ocis Downward shortwave radiation flux at the surface (MJ m-2) Average value in the 6h period 

olis Downward longwave radiation flux at the surface (MJ m-2)  Average value in the 6h period 

oces Upward shortwave radiation flux at the surface (MJ m-2)  Average value in the 6h period 

oles Upward longwave radiation flux at the surface (MJ m-2)  Average value in the 6h period 

roce Upward shortwave radiation flux at the TOA (MJ m-2)  Average value in the 6h period 

role Upward longwave radiation flux at the TOA (MJ m-2)  Average value in the 6h period 

albe Albedo (0 a 1 - adimensional)  Instantaneous values 

cape Available potential convective energy (m2 s-2)  Instantaneous values 

cine Energy to avoid convection (m2 s-2)  Instantaneous values 

agpl Instantaneous precipitable water amount (kg m-2)  Instantaneous values 

pcbs Pressure at the bottom of the clouds (hPa)  Instantaneous values 

pctp Pressure at the top of the clouds (hPa)  Instantaneous values 

tgsc Soil temperature at the surface layer (K) Instantaneous values 

ussl Soil humidity at the surface (0 a 1 - adimensional) Instantaneous values 
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Artificial Neural Networks (ANNs) 

Artificial Neural Networks (ANN) is computing 
systems, which attempt to simulate the structure and 
function of biological neurons. Generally,the 
ANNconsists of a number of interconnected processing 
elements, called neurons. Fig. 2 presents an artificial 
neuron. The ANN usually consists of an input layer, 
some hidden layers and an output layer. Signals flow 
from the input layer through to the output layer via 
unidirectional connections (synapses). Synapses 
connect neurons of neighboring layers. The input data 
(xi) is weighted by values associated with each synapse 
(wij), called synaptic weights. Knowledge is usually 
stored as a set of connection weights (presumably 
corresponding to synapse efficacy in biological neural 
systems). The activity level of a neuron (υj) is 
determined by summing up all its weighted values 
together with its bias (bj). The neuron output is a result 
from an activation function (φ(υj)). Generally, the 
activation function is a linear or hyperbolic-tangent 
function. The non-linear activation functions allow 
ANNs to simulate non-linearity behaviors and complex 
patterns [19]. 

The ANN architecture depends on the physical process, 
the training method and the kind of data that the neural 
network will simulate. The multi-layer perceptron (or 
feedforward ANN) is the most widely ANN 
architecture used in meteorological topics [23]. A 
schematic diagram of typical multilayer neural network 
architecture is shown in Fig. 3. The input layer consists 
on one neuron for each input data (called 
predictor),and the output layer consists of one neuron 
for eachsimulated data (called predictant). The number 
of hidden layers and their total amount of neurons are 
not a priori established. There is no standard procedure 
to identify the best combination of neurons and layers.  

The most widespread training algorithm used for 
multilayer perceptrons is the back propagation 
algorithm [33]. In this work, we use a modified version 
of back propagation, called Resilient Back propagation 
or Rprop [34]. The validation dataset was employed to 
verify the performance of the ANN with an 
independent data sample – data not used in training 
process. This procedure allowed to check the 
generalization capacity achieved by the ANN along the 
training and to find out the appropriate moment to stop 
the trainingstep in order to avoid overlearning. After 

training, the weights and bias are fixed and the ANN 
isready to be used in simulations. 

For this study, preliminary experiments revealed that 
better ANN performances were achieved using two 
hidden layers of neurons. These experiments were 
developed in two different situations. First, the 36 
variables described earlier were used as input to the 
ANN; and, in the second situation, only a set of 8 out of 
the 36 input variables were used. Table II shows the 
best neurons distributions verified for each ANN-
model. On both cases, only one neuron is the output 
layer to provide information on solar radiation flux at 
surface. The number of neurons in the input layer is 
equal to the number of predictors used to feed ANN. 

The investigation dataset was used to evaluate the 
performance of ANN to provide reliable solar 
irradiation forecast. The next topic discusses the 
statistical parameters used to evaluate deviations of the 
ANN and Eta/CPTEC outputs and the skills of each 
model to provide reliable forecasts. 

TABLE 2NUMBER OF ARTIFICIAL NEURONS IN EACH ANN 
LAYER 

 ANN-36p ANN-8p 

Input layer 36 8 

First hidden layer 36 16 

Second hidden layer 18 8 

Output layer 1 1 

ANN-36p – ANN using 36 variables as predictors 

ANN-8p – ANN using 8 variables as predictors 

 

FIGURE 2 SYMBOLIC REPRESENTATION OF AN ARTIFICIAL 
NEURON AND ITS PARAMETERS. 
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FIGURE 3SCHEMATIC DIAGRAM OF A FEEDFORWARD ANN 
USED IN THIS STUDY. 

Statistical analysis of ANN and Eta/CPTEC outputs 

The outputs (forecasts – F) were compared with 
measured values (observations – O), and deviations 
between them (F - O) were calculated. The performance 
of the Eta/CPTEC and ANN models was checked with 
two statistical indices: mean error (ME) or bias, and 
root mean squared error (RMSE). ME values provide 
information about the systematic deviations of the 
forecasts indicating if the models overestimateor 
underestimate the actual solar irradiation at the two 
measurement sites. RMSE is a measure of how 
effectively the models predict ground observations. 
Since the deviations are squared, large deviations have 
greatercontribution toRMSE. For this study, both ME 
and RMSEindices were normalized and expressed as 
percentage of the average solar irradiation in the two 
measurement sites, as shown in eq. (2) and (3). 

   (2) 

  (3) 

where N is the number of data pairs (forecast and 
observation) used in the evaluation – 287for FLN and 
118 for SMS.  

In addition, the Pearson’s correlation coefficient (R) was 
computed as described in eq. (4): 

  (4) 

In order to compare the performance of ANN and 
Eta/CPTECmodel, the skill-score index was used as 
defined in eq. (5): 

 (5) 

whereScore can be the ME% or the RMSE% values 
obtained for a particular model (Eta/CPTEC or ANN) in 
evaluation, Scoreref is the score calculated for a reference 
method and Scoreper f is the score value expected for 
perfect-forecast.  

Results and Discussion 

Initially, the Eta/CPTEC forecast and ground data for 
solar radiation flux were compared. As demonstrated 
in previous studies [10, 11], a significant positive bias 
(overestimation) was observed in the solar radiation 
flux provided by Eta/CPTEC model. Table III shows the 
performance scores obtained for Eta/CPTEC 
estimatesusing only the investigation dataset (N = 287 
for FLN; N = 118 for SMS). Similar scores were obtained 
when complete dataset was used for comparison 
between model estimates and ground data. Based on 
these results, it was assumed that the investigation 
dataset are representative of the complete dataset. Since 
ANN performance must be evaluated using the 
investigation dataset, only the Eta/CPTEC performance 
scoresusing this dataset were considered from this 
point on. 

TABLE 3PERFORMANCE SCORESOBTAINED BY MODEL 
ETA/CPTEC  

Scores 
Florianópolis São Martinho da Serra 

N =1150 N =287* N =472 N =118* 

R 0.747 0.720 0.790 0.775 

R2 0.558 0.519 0.624 0.600 

ME% 24.7% 24.6% 27.8% 28.0% 

RMSE% 39.7% 40.0% 41.9% 43.2% 

* - results obtained using only the investigation dataset. 

As previously mentioned, various statistical analysis 
and simulations were performed using different subsets 
of the predictors listed in Table I in order to find a 
reduced dataset of predictors which produces a 
performance similar to that obtained when all 36 
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predictors are used. These analysis point out a set of 8 
predictors: solar radiation flux at TOA (STOA), relative 
humidity (rh2m), surface temperature (tsfc), 
precipitable water amount (agpl), zonal wind speed at 
10 m height (u10m), and predictors for cloud fractions 
(cbnt, hinv and mdnv). Hereafter, the ANNs using 36 
and 8 predictors will be called ANN-36p and ANN-8p, 
respectively.  

Table IV presents the performance scores obtained for 
ANN-36p and ANN-8p using the investigation dataset 
for both ground sites. As noticed, there is a very similar 
performance in terms of correlation (R) and RMSE 
deviations. However, the ANN-8p provided solar 
irradiationforecastsfor both sites with 50% less ME than 
the ANN-36p.  

As noticed by comparing Tables III and IV, the ANN-
36p and ANN-8p provided solar irradiation forecasts 
presenting larger correlation with ground observations 
in both sites. The ANN-8p outputs presented the lowest 
systematic deviation while Eta/CPTEC forecastsshowed 
the largest deviations (ME and RMSE) for both ground 
sites. 

Fig. 4 and 5  present four scatter-plots comparing 
forecast values and observations. Besides the scatter-
plots for Eta model, ANN-36p and ANN-8p, it is also 
showed a plot for a forecast method called persistence. 
The persistence forecast is the simplest method to 
predict meteorological data and it consists in taking the 
value observed in a previous day as the forecast for the 
current day. Any forecast method is useful if it can lead 
to better results than the persistence forecast. 

According to Fig. 4 and 5, the solar radiation 
fluxoutputs provided by Eta/CPTEC model are better 
than persistence forecasts, in general. However, it can 
be observed the positive bias mentioned before. The 
Eta/CPTEC model overestimated the observations, 
especially for cloudy days when solar radiation flux at 
the surface is lower.  
TABLE 4 PERFORMANCE SCORESOBTAINED BY ANN-36P AND 

ANN-8P 

Scores 
Florianópolis São Martinho da Serra 

ANN-36p ANN-8p ANN-36p ANN-8p 

R 0.804 0.790 0.839 0.848 

R2 0.646 0.625 0.704 0.720 

ME% -2.1% -0.8% -1.7% -0.7% 

RMSE% 26.2% 26.9% 28.8% 27.6% 

All results obtained using investigation dataset. 

Meanwhile, the scatter-plots for ANNs showed better 
agreement between forecasts and observations – most 
of the data points are located near the perfect-forecast 
line (diagonal line). Small difference was observed 
when ANN-8p is used instead ANN-36p, indicating 
that the 8 selected predictors was able to provide solar 
irradiation forecast as reliable as the forecast obtained 
by using the 36 predictors. 

TABLE 5SKILL-SCORE CALCULATED WITH RMSE% VALUES 
FOR ANN TAKING MODEL ETA/CPTEC AND PERSISTENCE AS 

REFERENCE METHODS 

Scores 
Florianópolis São Martinho da Serra 

ANN-
36p 

ANN-
8p ANN-36p ANN-8p 

Skill(RMSE%, 
persistence) 

0.429 0.414 0.464 0.487 

Skill(RMSE%, Eta) 0.344 0.328 0.333 0.361 

* - results obtained using investigation dataset. 

 
FIGURE 4 SCATTER-PLOTS OF FORECASTS VERSUS GROUND 

DATAFOR FLN: (A) PERSISTENCE METHOD, (B) MODEL 
ETA/CPTEC, (C) ANN-36P, AND (D) ANN-8P 

Fig. 6  shows a short temporal series taken from the 
investigation dataset prepared for FLN and SMS sites. 
Outputs from Eta/CPTEC model and ANN were put 
together with observations acquired in Winter/2005 and 
Summer/2004-2005. Fig. 6 demonstrates the best 
agreement between the ANN forecasts and ground 
data. The deviations for each day are presented in Fig. 7. 
It is clear that an important improvement in short-term 
forecast for solar radiation fluxis achieved when ANN 
is used to refine solar irradiation outputs provided by 
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model Eta/CPTEC. However, no significant differences 
were observed between ANN-36p and ANN-8p. Again, 
the analysis of Fig. 7 demonstrates that the eight 
selected predictors provide enough information to 
ANN simulate the atmospheric processes with good 
performance. To quantify the improvement acquired by 
the use of ANNs, the skill-score values were calculated 
using RMSE% score, and the results are presented in 
Table V. In general, the ANNs lead to skill-scores in 
RMSE% 30% higher if compared to model Eta/CPTEC. 

 
FIGURE 5SCATTER-PLOTS OF FORECASTS VERSUS GROUND 

DATAFORSMS: (A) PERSISTENCE METHOD, (B) MODEL 
ETA/CPTEC, (C) ANN-36P, AND (D) ANN-8P 

Conclusions 

Currently, the renewable sources of energy are getting 
more importance into electricity generation systems. 
Therefore, there is an increasing demand from the 
energy sector for accurate forecasts of solar energy 
resources in order to support and manage electricity 
generation and distribution systems. The forecasts 
provided by numerical weather models could supply 
this demand but, in general, these forecasts present 
large deviations reducing their confidence and 
reliability. In Brazil, the Eta/CPTEC model provided 
solar irradiation forecasts with bias around 25%. Lower 
deviations were observed when ANNwas usedto refine 
the forecastsprovided by the Eta/CPTEC model. The 
comparison between solar irradiation forecasts and 
ground data showed a bias reduction from 25%for 
Eta/CPTEC forecasts till -1% for the ANN outputs. Both 
ANNs, ANN-36predictors and ANN-8predictors, have 
presented very similar performances. The skill-score 

indices showed that both ANNs have improved the 
confidence and reliabilityonthe solar radiation forecasts 
in more than 30% for both sites: Florianópolis in coastal 
area and São Martinho da Serra in continental region. 
The improvements in predictability were also observed 
as indicated by the correlation coefficients: from 0.72 to 
0.80 in FLN, and from 0.78 to 0.85 in SMS. 

 

FIGURE 6 SHORT TIME SERIES COMPARING FORECASTS AND 
GROUND DATA FOR SOLAR RADIATION FLUX AT SURFACE IN 

FLN AND SMS 

 

FIGURE 7 DEVIATIONS BETWEENFORECASTS AND GROUND 
DATA FOR SOLAR RADIATION FLUX AT SURFACE IN FLN 
AND SMS. THE MODEL ETA/CPTEC  PROVIDED ESTIMATES 

WITH LARGER DEVIATIONS. 
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