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ABSTRACT

The current work describes the use of multidimensional Euclidean geometric distance (EGD) and Bayesian

methods to characterize and classify the sky and cloud patterns present in image pixels. From specific images

and using visualization tools, it was noticed that sky and cloud patterns occupy a typical locus on the red–

green–blue (RGB) color space. These two patterns were linearly distributed parallel to the RGB cube’s main

diagonal at distinct distances. A characterization of the cloud and sky patterns EGD was done by supervision

to eliminate errors due to outlier patterns in the analysis. The exploratory data analysis of EGD for sky and

cloud patterns showed a Gaussian distribution, allowing generalizations based on the central limit theorem.

An intensity scale of brightness is proposed from the Euclidean geometric projection (EGP) on the RGB cube’s

main diagonal. An EGD-based classification method was adapted to be properly compared with existing ones

found in related literature, because they restrict the examined color-space domain. Elimination of this limitation

was considered a sufficient criterion for a classification system that has resource restrictions. The EGD-adapted

results showed a correlation of 97.9% for clouds and 98.4% for sky when compared to established classification

methods. It was also observed that EGD was able to classify cloud and sky patterns invariant to their brightness

attributes and with reduced variability because of the sun zenith angle changes. In addition, it was observed that

Mie scattering could be noticed and eliminated (together with the reflector’s dust) as an outlier during the analysis.

Although Mie scattering could be classified with additional analysis, this is left as a suggestion for future work.

1. Introduction

Automatic cloud evaluation from the surface is an

important issue in meteorology to reduce subjective as-

pects and operational costs of synoptic observers (SO).

Several research groups are demanding new techniques

for automatic cloud and sky detection to replace SO using

automatic cameras (World Climate Research Program

2007). Substituting the SO evaluation with the automatic

system defined by the World Meteorological Organiza-

tion (2008) as a synoptic observation system (SOS) is not

a trivial task. It involves aspects of human perception,

atmospheric sciences, mathematics, computer artificial

intelligence, etc., in the design of an ‘‘artifact’’ called an

intelligent agent (IA; Russell and Norvig 2003, chapter 2).

The existing image analysis artifacts used as SOS do not

match the qualitative performance of SO, and to find
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better solutions, improvements to the classification tech-

niques must be made.

SO observations are normalized by the World Meteo-

rological Organization (2008, chapter 15). These obser-

vations usually describe cloud type and amount, but the

evaluation is highly subjective. With regards to cloud

amount, for instance, inconsistencies exist when the same

sky is evaluated by distinct operators (Hoyt 1978). The

packing effect is another inconsistency, which is caused

by an overestimation of the amount of clouds near the

horizons (Holle and Mackay 1975). The natural human

lack of consistency, due to the operator’s fatigue and the

effects of shifts of observation teams, stimulate the use of

automatic systems. However, most camera-based SOS

methods are still compared to SOs for their validation on

the qualitative analysis of sky conditions (Souza-Echer

et al. 2006; Long et al. 2006).

Clouds can be evaluated from satellite images, avoiding

some of the previously mentioned problems but introduc-

ing others (Rossow 1982)—such as the mentioned pixel

geometric distortion, clouds that cannot be detected be-

tween layers because of the vertical distribution, seasonal

surface variation, etc. Any satellite-based assessment (e.g.,

energy balance, temperature, radiation, wind, clouds, etc.)

must take into account the surface observations’ ‘‘ground

truths’’ (GTs) to reduce modeling uncertainties. Further-

more, there is a consensus that for cloud evaluation a

complementary observation will be the best way to reduce

the limitations of both techniques.

SOs are trained to develop cognitive skills for sky pat-

tern identification, but perform poorly when determining

the precise amount of clouds. Camera-based SOSs have

a better performance when determining cloud amounts

than a surface observer, but perform worse for pattern

identification. A Camera-based SOS also relies on meth-

odologies like simplified dimension thresholding (Souza-

Echer et al. 2006) and the reduction of multivariate color

spaces (Long et al. 2001). Those were the only method-

ologies found in the literature that used image analysis.

Short wave, long wave, and other sensors used for that

purpose are out of the scope of the current work, but they

could be investigated as a cross-comparison analysis in the

future. The present work will consider only the compari-

son of the two equivalent methods existing in the literature

for surface image analysis.

Souza-Echer et al. (2006) used a flat image with a 628

field of view (FOV) camera on a zenith mount, always

avoiding the direct sun light. Only the saturation dimen-

sion of hue, saturation, and lightness (HSL, cylindrical

coordinates) was used on the characterization of the three

patterns: sky, clouds, and a third class obtained by exclu-

sion. The discrimination function to classify sky and clouds

is based on three standard deviation level thresholding

from the pattern average. Only these three patterns and

their amount are produced by this approach. The elimi-

nation of the sun from the observation domain restricts the

analysis to small brightness patterns only.

Long et al. (2006) employed a different criteria and an

experimental setup using two pieces of equipment: the

Total Sky Imager (TSI) and the Whole Sky Camera

(WSC) . TSI uses an image from a reflected mirror and

WSC a direct image of the sky, both with a 1608 FOV. A

detailed description about the experimental setup and

analysis is provided by Long et al.’s (2006) paper and in

Long et al. (2001). Although the cameras obtained images

in a 24 bits per pixel red–green–blue (RGB) file for-

mat, the classification is restricted to 0.6 threshold R–B

dimensions ratio (Long et al. 2006). This criterion reduces

the domain color analysis from black to magenta only

(Gonzales and Woods 2002), discarding any reference or

additional data that could be gathered from the green

channel, which might help to classify or analyze further

information of atmospheric patterns seen from images.

The paper also points out the difficulty of identifying

small differences in patterns due to atmospheric contents.

Brighter-blue pixels representing blue skies in the tran-

sition between molecular scatterings to turbidity are dif-

ficult to classify with the proposed method, and they

probably would be difficult to detect from a reduced di-

mension thresholding classification (Mantelli Neto 2001,

2005).

The aforementioned methodologies represent some

important pioneering techniques aiming at the replace-

ment of sky-state observers in meteorological stations.

However, both methodologies do not use all the possi-

bilities available for image analysis. A 24-bit image allows

224 5 16 777 216 different color combinations that can be

grouped, analyzed, and combined with a great potential to

be explored as a domain. Souza-Echer et al. (2006) use

only 8 bits or 28 5 256 lightness possibilities to identify

clouds. Long et al. (2001) use 16 bits or 216 5 65 536 colors.

Clouds, however, are white with equally likely compo-

nents of red, blue, and green. Lillesand and Kiefer (1994)

define clouds as nonselective, equally scattering all color

components. Our work also presents a new point of view

on sky pattern analysis based on a Bayesian methodology

(Tenenbaum et al. 2006; Chater et al. 2006; Russell and

Norvig 2003, chapter 20; National Institute Of Standards

2010, section 1) to improve surface automatic observation

of the atmosphere.

The methodology of the present work uses multivar-

iate color space features (Johnson and Wichern 2007) to

classify clouds and sky pixels by means of a pattern sta-

tistical characterization using the Euclidean geometric

distance (EGD). It also intends to propose a scale based

on the brightness projection from the Euclidean geometric
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projection (EGP) value of pixels on the RGB diagonal

cube.

The next sections will show in a Bayesian approach

the exploratory data analysis (EDA) of the pixel pattern

domain and the mathematical approach to find the geo-

metric position of the target patterns. From that approach,

a solution was implemented on a graphical user interface

(GUI) and input images were analyzed using the proposed

method. A preliminary analysis and a color-space dimen-

sion reduction have been made to allow a comparison with

other methods.

2. Material and methods

a. Experimental setup and preliminary analysis

Images were collected using a commercially available

sky imager (TSI-440, available online at http://www.yesinc.

com/products/data/tsi440/index.html) in standard Joint

Photographic Experts Group (JPEG) file format at a

352 3 288 resolution with 24-bit colors. Images were

obtained not directly from the sky, but by a dome-shaped

reflector every 15 min from dawn to dusk, according to TSI

program parameters. The reflected image represents a 1608

hemispheric angle of view. An adhesive, moving shading

band was applied on the reflector surface to avoid damage

on the camera by direct exposition to sunlight. A pre-

liminary image processing was performed on images to

eliminate spurious and systematic patterns that might in-

terfere in the image analysis (Montgomery 2005). Three

patterns are defined as spurious: border effects, horizontal

obstructions, and the moving shading band. Borders are

not relevant for image analysis because they represent the

equipment’s self image. Horizontal obstructions are fixed

objects like poles, towers, trees, buildings, and geographic

features that are present in the image and do not represent

any useful information. The equipment’s moving shading

band was also masked. Obstructions and the horizon have

a fixed position and are easily masked on the image. But

the shading band is a dynamic feature that moves ac-

cording to the solar movement and for every image. A

different mask file was obtained according to each specific

time position. Masking was performed by hand-marking

patterns pixel by pixel using the software GT generator

tool developed by the research group. The output of the

GT tool is a black mask in a bitmap (BMP) file. Mask files

are loaded dynamically by the GUI software tool during

the analysis phase for every input image.

The images were obtained in the facilities of the Solar

Energy Laboratory of the Federal University of Santa

Catarina, Florianopolis, Brazil, (LABSOLAR, available

online at http://www.lepten.ufsc.br/) located at 278329S,

488319W. The site is also a Baseline Surface Radiation

Network (BSRN, available online at http://www.bsrn.

awi.de/) station site. A set of preliminarily images were

analyzed on the RGB and HSL color spaces using the

Color Inspector 3D visualization tool (available online at

http://www.f4.htw-berlin.de/;barthel/ImageJ/ImageJ.htm).

During visual inspection of several collected images,

a typical locus of cloud and sky patterns can be noticed

in the color space. The typical locus related to pattern

presence is illustrated in Fig. 1 for a cloudy sky and Fig. 2

for a blue sky. Color inspector 3D showed that cloud

pixels are typically gray and white, distributed linearly,

and closely parallel to the RGB diagonal cube. It is also

possible to notice a luminous gradient-scale distribution

along the main diagonal. Sky patterns also showed a linear

behavior in the RGB cube, but pixels were located a bit

farther from the RGB diagonal. Sky and cloud patterns of

the same images showed a nonlinear behavior in the HSL

color space. Based on those observations, it was decided

to perform mathematical operations in the RGB color

space, avoiding the HSL nonlinearity. But some analyses

were still performed on HSL because its representation is

more closely related to the human perception of colors.

The other color spaces were not considered.

b. Cloud and sky pattern characterization with
exploratory data analysis

A preliminary statistical analysis was used on EGD to

characterize the target patterns identified visually at two

different distances from the RGB main diagonal. The

selected images represent typical samples of cloud and

sky patterns. The same original cloud and sky images

seen on Figs. 1 and 2 (and Figs. 4 and 5) were used as

reference ground truths (Jiang et al. 2006) for those two

patterns (Fernandez-Garcıa et al. 2008). Then an EDA

was performed for each pattern to determine their typical

EGD from RGB cube diagonal.

To explain the EGD method, a generic pixel in the

RGB color space is shown in Fig. 3. the pixel distances

can be determined by considering them as vector mod-

ules. Projection and distance of pixels from the main

diagonal can be easily calculated by

PROJ 5 D
�
�
�
� cos(a),

DIST 5 D
�
�
�
� sin(a).

By means of the Al-Kashi theorem (also known as the

law of cosines) and the sum of vectors formula we obtain

Cj j5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2552 1 2552 1 2552
p

5 441.673,

A
�
�
�
�
2

5 D
�
�
�
�
2

1 X
�
�
�
�
2� 2 D

�
�
�
� C
�
�
�
� cos(a),

C 5 D 1 A,
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where

d a is the angle between the analyzed vector pixel value

and the main diagonal;
d A is the complementary vector from the color pixel

to the RGB cube vertex;
d C is the color cube main diagonal vector, with a value

of (255 255 255); and
d D is the pixel having (R, G, and B) values.

Replacing A in the Al-Kashi theorem and rearranging

the formula leads to

cos(a) 5
C�D
�
�

�
�
2� D
�
�
�
�
2� C
�
�
�
�
2

�2 D
�
�
�
� C
�
�
�
�

.

The formulation above demonstrates that only the pixel

value is necessary to calculate its distance and projection

in the main RGB diagonal. The distance values’ text files

were generated in a GUI interface from images and

loaded into a commercially available statistical analysis

tool. After being analyzed, the distances of the two pat-

terns were considered as normally distributed continuous

variables, with a typical mean and variance distance from

the cube’s diagonal. Image characterization for the cloud

pattern obtained from RGB coordinates are illustrated

in Fig. 4.

To eliminate outlier points, the interquartile distance

(IQD) range was used (which is the distance between

the upper and lower quartile of data). The range is

obtained from the calculated points of the lower 25%

(Q1) and the upper 75% (Q3) of data statistics. Points

outside the inferior and superior interquartile limits

(IQI and IQS, respectively) of the average point were

eliminated. A summary of the equations used in outlier

elimination is described below:

FIG. 1. (a) The typical locus of the cloud patterns observed in images are shown in (b) RGB color-space and (c) HSL color space. The first

row is related to the original image and the second row to masked images without outliers. Outliers were masked to black. ‘‘Ra,’’ ‘‘Mi,’’ and

‘‘Bo’’ labels on the color space indicate, respectively, the typical locus of Rayleigh- and Mie-scattering patterns, the equipment’s border, and

the shading band. Units are in pixel relative intensity for column (b) and pixel-normalized relative intensity for column (c).

SEPTEMBER 2010 M A N T E L L I N E T O E T A L . 1507



IQD 5 Q3�Q1, IQD: Interquartile distance,

IQI 5 Q1� 1.5 3 IQD, IQI: Inferior interquartile

limit, and

IQS 5 Q3 1 1.5 3 IQD, IQS: Superior interquartile

limit.

Figure 4 illustrates the statistical analysis that was

performed with the pixel values extracted from masked

cloud images and the pixel values converted into text

files. Outlier extraction is made in the following way by

using a statistical analysis

IQD 5 Q3�Q1 5 12.75 and

IQS 5 Q3 1 1.5 3 IQD 5 45.315.

Cloud outlier pixels were discarded if distance .45.315.

Only the superior interquartile limit value was considered

because the distribution of clouds pixels starts in the main

diagonal. After excluding the outlier values from cloud

images, the remaining pixels from the original image can

be visualized on the second row of Fig. 1. A summary for

cloud pattern limits is illustrated in Table 1.

For the sky pattern, pixel values from the masked im-

age were extracted and converted into text files to per-

form the statistical analysis shown in Fig. 5. From analysis

of the figure, a statistical outlier extraction was developed

using the following conditions:

IQD 5 IQ3� IQ1 5 8.26,

IQS 5 IQ3 1 1.5 3 IQD 5 89.240, and

IQI 5 IQ1� 1.5 3 IQD 5 56.200.

Clear-sky outlier pixels were discarded if they were

not in the interval 56.200 # distance # 89.240. After

excluding outliers from the image, the remaining pixels

can be visualized in the image of Fig. 2 in the second row.

FIG. 2. (a) The typical locus of sky patterns observed in images are shown in (b) RGB color-space column and (c) HSL color space. The

first row is related to the original image and the second row to masked images without outliers. Outliers were masked to black. ‘‘Du’’ and

‘‘Bo’’ on the color space indicate, respectively, the typical locus of Dust pattern and the equipment’s border and shading band. Units are

in pixel relative intensity for column (b) and pixel normalized relative intensity for column (c).
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A discrimination boundary within a 3 standard devia-

tion from the average was established for both patterns

to include 95% of pixels in the classification. A summary

of boundary values used for sky patterns is illustrated

in Table 1. As can be noticed in Table 1, there is an

overlapping region of distance limits between 55.30 and

54.01, resulting in error type I (classification of clouds as

Rayleigh) or type II (classification of Rayleigh as clouds)

according to the pattern analyzed. Type I and II errors are

due to misclassification and are caused by the superpo-

sition of the end tails of two neighboring Gaussian dis-

tributions. A ‘‘real visual boundary’’ between cloud and

sky patterns in the image is defined here by statistical

exclusion. This overlapping region was considered an

intermediate pattern, tagged as the ‘‘I’’ category classi-

fication and colored brown Fig. 6c.

c. Brightness scale

Pixel EGPs for cloud or sky patterns were ranked in

submultiples of the RGB cube’s main diagonal maxi-

mum value. These EGP values were divided into six

slots, in categories C1–C6 for clouds and R1–R6 for

Rayleigh scattering. Categories were selected based on

previous work done by the author (Mantelli Neto 2005).

This work conceptually considered blue sky as shades of

the Rayleigh-scattering effect (Iqbal 1983; Lenoble

1993); clouds as nonselective scattering of solar light in

white (Lillesand and Kiefer 1994); and the total simply

by sky. EGP values increase from ‘‘darker’’ to ‘‘brighter’’

according to their brightness value, as shown in Table 2.

Shades of green were employed for the sky and shades of

red for clouds to avoid color confusion with the original

patterns for the results presented in Fig. 6. The discrim-

ination between clouds and Rayleigh scattering was done

FIG. 3. Typical analysis used on generic pixel determination of

EGD on RGB color-space diagonal. Units are in pixel relative

intensity.

FIG. 4. EDA used for the characterization of the cloud pattern. It includes EGD statistical summary, histogram, box

plot, and confidence interval. Horizontal-axis units are in pixel intensity normal to RGB cube’s main diagonal.
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by statistical methods based on the Gaussian distribution.

All the assumptions made on statistical hypothesis tests

for additional pixel values were used in the discrimination

analysis and have the same meaning. After the character-

ization of cloud and sky patterns, their typical geometric

information was implemented as confidence intervals and

loaded into the GUI for pixel classification of other images.

Some results of image classification are presented in Fig. 6

and analyzed in the next section.

3. Results

After supervised learning, a set of 49 images relative

to one day of observations made on 11 March 2002 every

15 min were analyzed using EGD (the 1900 LT image

was missing). Results are presented as the percentage of

coverage for each pattern. Images were obtained from

output files generated by the GUI tool. A general sum-

mary showing pattern data can be observed in Fig. 7,

describing the diurnal variability of sky patterns. Data

shows dominant categories of pixels mostly between R3

and R6 for sky and C3 and C6 for clouds for the specific

image set observed. An increased amount of ‘‘I’’ patterns

occur mostly in mixed conditions because a threshold (or

frontier) between cloud and sky patterns is not formally

defined but determined by statistical parameters.

It is important to keep in mind that clouds are not

purely white or gray; otherwise, they would have a dis-

tribution of points concentrated around the RGB cube’s

main diagonal or around the HSL cylinder’s main axis.

The following could explain why they contain some

amount of color. Possible colors could be blue due to

Rayleigh scattering or red–orange due to Mie scattering.

This fact could also be confirmed with additional veri-

fication using the HSL color space, as shown in Fig. 8.

Rayleigh and Mie effects are present in different sectors

of the HSL color-space angle as can be seen in Fig. 8b.

For a clear sky, the blue color is limited to a well-defined

sector as can be seen in the figure’s first row. For a cloudy

sky pixel values span one sector with a component of blue

and in another sector with red–orange (circled in dashed

on second row). For the TSI used in the experiment, there

TABLE 1. Summary of cloud and sky population patterns limits. Units are in pixel relative intensity.

Pattern Mean Std dev N Q1 Q3 Distance lower limit m 2 3s Distance upper limit m 1 3s

Cloud 20.945 11.45 49 224 13.44 26.19 0 55.30

Sky 72.863 6.284 96 592 68.59 76.85 54.01 —

FIG. 5. EDA used for the characterization of the Rayleigh pattern. It includes EGD statistical summary, histogram,

box plot, and confidence interval. Horizontal-axis units are in pixel intensity normal to RGB cube’s main diagonal.
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FIG. 6. (a) Original images were compared to (b) images analyzed using Long’s method and (c) the geometric distance method. In

column (b), clouds were marked in clear gray, and skies were marked in dark gray. In column (c), clouds were colored in shades of red and

skies in shades of green. Intermediate patterns were colored in brown in (c).
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are some limitations on Mie-scattering observations be-

cause the software takes images only above 58 of solar

elevation, thus avoiding the major occurrences of Mie

scattering.

Noteworthy here is the robustness of the character-

ization method when eliminating outliers. Although the

elimination of pixels in the middle of the cloud pattern

(the second row of Fig. 1) might seem strange, it has an

explanation. By using Color Inspector 3D, it was observed

that Rayleigh and Mie scattering were intermixed in the

original images of clouds, as explained in the previous

paragraph. That feature helps to identify and eliminate

these patterns from cloud images.

The Rayleigh scattering observed in Fig. 7 shows

a diurnal variation with a clearly noticeable gradient in

the brightness. It is speculated that this gradient could be

associated to other atmospheric contents (aerosols or wa-

ter vapor), causing diffusion of sun light. For an observer

on the surface, Rayleigh scattering is brighter at higher

zenith angles than lower ones, indicating that brightness is

more intense near the surface (R5) than the lower zenith

angles (R3). This is probably due to the diffusion of sun

light due to a higher concentration of atmospheric con-

stituents near the surface.

EGD is a distance whose values span from overcast

(near the main diagonal) to clear sky, defined here as

Rayleigh scattering independent of sun-light variation.

This indicates that EGD could also be used to provide

information on sky clearness or a similar index. EGD

and pixel EGP on the main diagonal (brightness) could

be used to support the spatial evaluation of radiation

processes from the atmosphere toward the surface. The

advantage of the EGD-derived values employed in this

analysis is the instantaneous temporal resolution in con-

trast to indexes obtained from a long temporal series of

data. However, further evaluation and careful investi-

gation should be performed to validate and convert pixel

values to physical units.

4. Comparisons to related work

There is a limitation in comparing the current meth-

odology with the results of other related works because

TABLE 2. Assignments for the pixels’ projection values into category slots.

Assigned category R1 or C1 R2 or C2 R3 or C3 R4 or C4 R5 or C5 R6 or C6

Projection value 0–75 75–150 150–225 225–300 300–375 375–442

FIG. 7. Sky pattern graph showing the proportion or fraction of sky patterns obtained by the

geometric distance method vs time of day. Images were taken from 0900 to 2100 LT every

15 min. The legend categories are in Table 2.
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of distinct experimental setups and domains used for the

desired outcomes.

In Souza-Echer et al. (2006), images were taken from

a common camera with observations close to small zenith

angles and the sun was always kept out of the FOV. In

that condition, pixels representing blue and cloudy skies

with high bright values were not analyzed. In high-

brightness conditions the saturation values for cloud/sky

patterns are mixed with each other, making the discrim-

ination based only on saturation values incomplete. In

those conditions, the discriminating function adopted by

Souza-Echer et al. (2006) works only on low-brightness

pixel values. This is illustrated in Figs. 9a and 9b, where 9a

represents an overcast sky and 9b a clear sky. Only the

hue and saturation dimensions of the HSL color space are

shown, and saturation discriminating values as proposed

by Souza-Echer et al. (2006) could be seen as concentric

circles. In Fig. 9, the angle H represents different colors on

the image domain, and the radius is its saturation S. High-

brightness pixels for sky and clouds are mixed with each

other in the same saturation radius, leading to misclas-

sification errors. Therefore, because of the limitation of

Souza-Echer et al. (2006) with high-brightness pixels, the

classification was not implemented in the GUI tool to be

compared with the proposed EGD method.

Long et al.’s (2006) methodology used the same ex-

perimental setup as the one presented in this paper but

considered only two of the three dimensions available for

data analysis. The domain used by Long et al. (2006) is the

two-dimensional (2D) coordinates using the red and blue

channels and not considering the green channel features.

This approach is distinct from the approach used for the

FIG. 8. The first line is used as a comparison showing Rayleigh scattering and the effect of the reflector’s surface dust on color space and

image, outlined in solid and dashed lines. The second line shows (a) obstruction-masked original images with identification of Mie

scattering in dashed lines and Rayleigh scattering in solid lines intermixed in the cloud pattern. (b) The respective HSL color space

reduced to H, S dimensions only showing the presence of Mie scattering in dashed lines is illustrated. Note that the Rayleigh scattering was

superimposed by cloud pixels in that perspective view and was not outlined. (c) The respective RGB color space showing typical locus of

Rayleigh scattering in solid lines and Mie scattering in dashed lines is illustrated.
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present paper, which uses a three-dimensional (3D) do-

main. We applied the same methodology as Long et al.

(2006) to try and reproduce the same technique for the

detection of clouds and clear sky. The histograms illus-

trated in Fig. 10 with the distribution of values are related

to the same cloud and sky patterns images of Figs. 1, 2, 4,

and 5. As in Long et al.’s (2006) original paper, the same

threshold of 0.6 was used for the separation of the cloud

and clear-sky patterns.

From that implementation, a selected group of images

was analyzed and the comparative results are shown in

Table 2. Only a few cases were shown because of space

constraints. A complete set of data, including all results and

image analyses, can be seen on the Image Processing and

Graphics Computing Lab (LAPIX) home page (available

online at http://www.lapix.ufsc.br/Clouds/CloudsGeometric

Distance/CloudsGeometricDistance.html).

The numeric data obtained from the EGD analysis of

49 images were grouped and reduced to be compared

with the Long et al. (2006) method. A summarized pro-

portion or fraction of the sky and cloud pattern along the

day comparing Long et al. (2006) and EGD method are

shown in Fig. 11.

Figure 12 illustrates a comparative correlation between

the two methods for sky and cloud proportions along the

day. Pearson’s correlation coefficient showed a 0.979 (r2 5

0.958 441) correlation for cloud proportion and a 0.984

(r2 5 0.968 256) correlation for sky proportion.

Small differences between the two methods can be

explained. The main difference is that Long et al. (2006)

established a classification method based on a ‘‘reduced

dimension empirical discrimination proportion value.’’ The

FIG. 9. Differences in the pixel distribution for a cloudy sky from Fig. 1a and a clear sky from Fig. 2b reduced to S

and H dimensions of HSL color space. Circles are placed by the visualization tool and are an example illustrating the

type of discrimination function used by Souza-Echer et al. (2006) for each case. Units are in pixel-normalized relative

intensity.

FIG. 10. Histograms of patterns according to the Long et al. (2006)

method implemented on the GUI for (a) clouds and (b) clear skies.

Horizontal scale is nondimensional.
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present method is based on ‘‘statistics-based confidence

intervals.’’ The geometric distance locus considers the tail

superposition of statistical characterization due to the al-

ready known type I and II errors, not mentioned or con-

sidered in the Long et al. (2006) paper. Long et al. (2006)

used a hard discrimination criterion, making use of in-

termediate values classified as either clouds or sky. But for

clear-sky and cloud conditions both methods agree. The

squared correlation coefficient indicates that the 95.84%

variability in clouds and the 96.83% in sky detection in the

Long et al. (2006) method are associated with cloud vari-

ability in the EGD method. Differences between the two

methods are greater, especially when transitory cases are

present, because of the occurrence of mixed blue-sky and

cloudy conditions in the image. Figure 12 also shows that

differences between the two methods tend to increase as

the cloud proportion increases.

Looking at the graphics of Fig. 12, a small offset can be

observed. It can be inferred that the Long et al. (2006)

method assigns more pixels to the cloud proportion than

the EGD method. This is confirmed by inspecting the

accumulated analysis of both methods throughout the

day. Long et al.’s (2006) method indicates a higher

amount of cloud proportion and a smaller sky proportion

than the EGD method. This explains the observed bias

between the two methods. In fact, the determination of

FIG. 11. Comparison of proportions or fraction of sky pattern along the day obtained from (a) geometric distance and (b) Long et al.

(2006). Images were taken from 0900 to 2100 at 15-min intervals.

FIG. 12. The comparative correlations between Long et al. (2006) and the EGD methods for (a) sky pattern on and

(b) clouds pattern on.
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cloud proportions is sensitive to the established discrim-

ination values; as a result, distinct criteria can lead to

different results. The differences could be reduced if

a characteristic pixel value could be established as the

boundary in transition between clouds to sky. Image-

preprocessing filtering on smooth transitions like the ones

found in the current domain could help to determine that

boundary. This is a subject that is recommended to be

investigated in future.

5. Future work

Future work based on the Bayesian methodology

could explore the use of geometric loci to model other

features in the images, especially the ones identifiable by

observers but not by automatic systems, which would al-

low the improvement of qualitative analyses performed by

automatic systems. Because of the Rayleigh gradient ob-

served in the sky and its quantification with the brightness

EGP scale, we intend to investigate a correlation between

the pattern variations to the sun according to photometer

measurements. EGD- and EGP-derived values could be

correlated to surface radiometers to support the evalua-

tion of a radiative surface flux. In that case, a comparison

between EGD’s clearness, cloud forcing, and other es-

tablished time series–based indexes existent in the liter-

ature should be investigated. The current methodology

is being tested long term at the BSRN São Martinho da

Serra station in Southern Brazil.

6. Conclusions

The purpose of the work described in this paper was to

develop a methodology to improve the automatic clas-

sification of clouds and sky patterns from surface im-

ages. EGD allowed not only a classification of those

patterns comparable to existing methods but also pro-

vided new features in the images based on their color

attributes, like Mie scattering and dust removal from the

reflector. Those new features could be observed with the

2D (used by Long et al. 2006) and the 1D (used by

Souza-Echer et al. 2006) color space–based approaches,

because they were masked out by dimensional reduction

and mathematical simplifications. The 3D approaches

expand the domain analysis of color space to its limit,

allowing new potential features to be investigated.

The use of EGD allowed for the classification of

clouds and Rayleigh-scattering patterns invariant to

their brightness, reducing problems due to solar disk

presence, solar variations of the zenith angle, and in the

amount of images necessary to model typical occur-

rences of patterns. Statistical methodologies applied

to the image analysis supported those assumptions by

means of the Gaussian distribution of patterns and the

central limit theorem.

The Bayesian model using supervised learning and

analysis applied to EGD patterns proved to be highly

correlated to the Long et al. (2006) approach, even when

simplified by dimension reduction. This high correlation

proved that the Bayesian model used in the present re-

search is a useful tool and could be employed to identify

other patterns based on color attributes in future research

works. These patterns representing physical phenomena

in different color attributes are the same ones perceived

by human vision. The mathematical modeling used in the

present work matches the theory of the probabilistic

model of cognition, as described by Tenenbaum et al.

(2006) and Chater et al. (2006), and uses statistical

learning and statistical inferences to classify patterns.
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